Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)=1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}\)
\(=1+\frac{1-x^2-y^2}{x^2y^2}=1+\frac{\left(x+y\right)^2-x^2-y^2}{x^2y^2}=1+\frac{2}{xy}\)
Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow1+\frac{2}{xy}\ge1+\frac{2}{\frac{1}{4}}=9\)
\("="\Leftrightarrow x=y=\frac{1}{2}\)
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)
\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Mà theo BĐT AM - GM ta có tiếp:
\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z=1
Vậy..................
\(\left(x-y\right)^2\ge0;\forall xy\Rightarrow x^2+y^2\ge2xy\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow x+y\ge2\sqrt{xy}\)
\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{2}{xy}\Rightarrow xy\ge4\Rightarrow x+y\ge2\sqrt{xy}\ge2\sqrt{4}=4\)
\(C_{min}=4\) khi \(x=y=2\)
Hoặc là:
\(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(\dfrac{4}{x+y}\right)^2=\dfrac{8}{\left(x+y\right)^2}\)
\(\Rightarrow\left(x+y\right)^2\ge16\Rightarrow x+y\ge4\)
Cho x,y là các số dương thỏa mãn \(\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm GTNN của C = x+y
Đề bài sai, C không có giá trị nhỏ nhất
Nếu \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\) thì có thể tìm được min của C
Áp dụng BĐT AM-GM ta có:
\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)
Xảy ra khi \(x=y=\frac{1}{2}\)
Phần này chug: áp dụng Cauchy có: \(a+b\ge2\sqrt{ab}\Leftrightarrow ab\le\left(\frac{a+b}{2}\right)^2=\frac{1}{4}\)
a) \(A=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{1}{xy}\ge\frac{1}{\frac{1}{4}}=4\)
b) Áp dụng BĐT Schwart có: \(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\left(a+b\right)^2\)
c) đề câu này là \(x+\frac{1}{x}\)hay \(\frac{x+1}{x}\)vậy em?
\(P=\left(2x+\dfrac{1}{x}\right)^2+9+\left(2y+\dfrac{1}{y}\right)^2+9-18\)
\(P\ge2\sqrt{9\left(2x+\dfrac{1}{x}\right)^2}+2\sqrt{9\left(2y+\dfrac{1}{y}\right)^2}-18\)
\(P\ge12x+12y+\dfrac{6}{x}+\dfrac{6}{y}-18\)
\(P\ge6\left(4x+\dfrac{1}{x}\right)+6\left(4y+\dfrac{1}{y}\right)-12\left(x+y\right)-18\)
\(P\ge6.2\sqrt{\dfrac{4x}{x}}+6.2\sqrt{\dfrac{4y}{y}}-12.1-18=18\)
\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)
Ta có: \(A=1-\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{1}{x^2y^2}\)
\(=1-\frac{\left(x+y\right)^2-2xy}{x^2y^2}+\frac{1}{x^2y^2}\)
\(=1-\frac{1}{x^2y^2}+\frac{2}{xy}+\frac{1}{x^2y^2}\)
\(=1+\frac{2}{xy}\)
Mà: \(x,y>0;x+y=1\)
Áp dụng BĐT Cosi ta có:
\(1=\left(x+y\right)^2\ge4xy\Rightarrow xy\le\frac{1}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Lúc đó: \(A=1+\frac{2}{xy}\ge1+\frac{2}{\frac{1}{4}}=9\)
Vậy \(Min_A=9\Leftrightarrow x=y=\frac{1}{2}\)
Tặng lì xì năm ms nè nhưng thôi tớ giải đc rồi dù sao cảm ơn cậu :))) @huyền
Cách khác:V theo cách của cô tớ hơi lạ =_=:)))
Ta có x + y = 1 => \(\hept{\begin{cases}x-1=-y\\y-1=-x\end{cases}}\Rightarrow\) tương đương vs biểu thức sau :
\(\frac{\left(x^2-1\right)\left(y^2-1\right)}{x^2y^2}=\frac{\left(x-1\right)\left(x+1\right)\left(y-1\right)\left(y+1\right)}{x^2y^2}\)
\(=\frac{\left(-y\right)\left(x+1\right)\left(-x\right)\left(y+1\right)}{x^2y^2}=\frac{\left(x+1\right)\left(y+1\right)=xy+x+y+1}{xy}=1+\frac{2}{xy}\)
Mà 1 = x + y và x + y > 2 Vxy => (x + y) 2 > 4xy do đó 1 = (x+y)2> 4xy
\(\frac{\Rightarrow1}{4xy}\ge\frac{1}{\left(x+y\right)^2}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\Rightarrow\frac{2}{xy}\ge8\Rightarrow\)
MinA = 9 khi x=y=1/2