K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NV
0
NR
2
NV
Nguyễn Việt Lâm
Giáo viên
22 tháng 2 2021
\(P=\dfrac{1}{2xy}+\dfrac{1}{2xy}+\dfrac{1}{x^2+y^2}\ge\dfrac{1}{\dfrac{2.\left(x+y\right)^2}{4}}+\dfrac{4}{2xy+x^2+y^2}=\dfrac{6}{\left(x+y\right)^2}=6\)
\(P_{min}=6\) khi \(a=b=\dfrac{1}{2}\)
AH
Akai Haruma
Giáo viên
22 tháng 2 2021
Cách khác:
Đặt $xy=t$. Bằng $AM-GM$ dễ thấy $t\leq \frac{1}{4}$
\(P=\frac{1}{xy}+\frac{1}{(x+y)^2-2xy}=\frac{1}{xy}+\frac{1}{1-2xy}=\frac{1}{t}+\frac{1}{1-2t}\)
\(=\frac{1}{t}-4+\frac{1}{1-2t}-2+6=\frac{(1-4t)(1-3t)}{t(1-2t)}+6\geq 6\) với mọi $t\leq \frac{1}{4}$
Vậy $P_{\min}=6$ khi $x=y=\frac{1}{2}$
MD
0
NQ
0
LM
0
TH
0
TN
0
T
2