Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho x,y là các số nguyên thỏa mãn:(x^2+1)chia hết cho(xy +1). Chứng minh (y^2+1) chia hết cho (xy+1)
Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1
hay x^2y^2 +y^2 chia hết xy+1.
Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1 Thêm và bớt 2xy+1
=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1
=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1 chia hết xy+1
Vì x,y là số nguyên dương mà \(x+1⋮y\)nên \(x+1\ge y\)(1)
Suy ra \(x+3\ge y+2\)(1)
Mặt khác \(y+2⋮x\)nên \(y+2\ge x\)(2)
Từ (1) và (2) suy ra \(x\le y+2\le x+3\)
Suy ra \(y+2=x\)hoặc \(y+2=x+1\)hoặc \(y+2=x+2\)hoặc \(y+2=x+3\)
+Với \(y+2=x\)mà \(x+1⋮y\)nên \(3⋮y\)mà y là số nguyên dương nên y = 1 hoặc y = 3
Nếu y = 1 thì x =3 ( thoả mãn )
Nếu y = 3 thì x = 5 ( thoả mãn )
+ Với \(y+2=x+1\)mà \(x+1⋮y\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y =1 hoặc y =2
Nếu y =1 thì x = 2 ( không thoả mãn )
Nếu y = 2 thì x =3 ( không thoả mãn )
+Với \(y+2=x+2\)mà \(y+2⋮x\)nên \(y+2⋮y\)nên \(2⋮y\)mà y là số nguyên dương nên y = 1 hoặc y =2
Nếu y = 1 thì x= 1 ( thoả mãn )
Nếu y =2 thì x = 2 ( không thoả mãn )
+Với \(y+2=x+3\)mà \(y+2⋮x\)nên \(x+3⋮x\)nên \(3⋮x\)mà x là số nguyên dương nên x =1 hoặc x = 3
Nếu x = 1 thì y = 2 ( thoả mãn )
Nếu x = 3 thì y = 4 ( thoả mãn )
Kết luận....
Theo mình nghĩ X=2 ,Y=1 , vì thay vào 1+3 =4 chia hết cho 2, và 2+2=4 chia het cho 1 , hãy tin vao mình :)))