K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

Ta có : x^4+y^4

=(x^2)^2 + (y^2)^2

=(x^2)^2+2x^2y^2+(y^2)^2-2x^2y^2

=(x^2+y^2)^2-2.(xy)^2

=[(-3)^2]^2-2.(-28)^2

=81-2.784

=81-1568

=-1487

30 tháng 10 2016

x - y = 7 => y = x - 7

=> x(x - 7) = 60

     x2 - 7x + 12,25 = 72,25

   (x - 3,5)2  = 72,25 mà x > 0 => x - 3,5 > -3,5

=> x - 3,5 = 8,5 => x = 12 => y = 60 : 12 = 5 => P = 124 - 54 = 20111

30 tháng 10 2016

cảm ơn bạn! bạn có thể trả lời câu hỏi nữa mk vừa đăng lên ko

23 tháng 10 2021

\(x+y=5\Rightarrow\left(x+y\right)^2=25\)

\(\Rightarrow x^2+2xy+y^2=25\)

\(\Rightarrow x^2+y^2=25-2xy=25-2.4=17\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=5.\left(17-4\right)=65\)

26 tháng 6 2017

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2\left(xy\right)^2\)

\(=\left(a^2-2b\right)^2-2b^2=a^4-2.a^2.2b+4b^2-2b^2=a^4-4a^2b+2b^2\)

27 tháng 9 2021

Ta có: \(x-y=4\Rightarrow\left(x-y\right)^2=16\)

\(\Rightarrow x^2-2xy+y^2=16\Rightarrow x^2+y^2=16+2xy=16+2.3=22\)

\(M=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=4.\left(22+3\right)=100\)

27 tháng 9 2021

Cảm ơn bạn

12 tháng 7 2016

1./ \(x+y=3\Rightarrow\left(x+y\right)^3=27\Rightarrow x^3+y^3+3xy\left(x+y\right)=27\Rightarrow x^3+y^3+3\cdot2\cdot3=27.\)

\(\Rightarrow x^3+y^3=9\)

2./ \(\left(x+3\right)\left(x^2-3x+3^2\right)-x^3-2x-4=0\)

\(\Leftrightarrow x^3+27-x^3-2x-4=0\Leftrightarrow2x=23\Leftrightarrow x=\frac{23}{2}\)

12 tháng 7 2016

1/ \(x+y=3\)

\(\Rightarrow\left(x+y\right)^2=9\)

\(\Rightarrow x^2+2xy+y^2=9\)

\(\Rightarrow x^2+4+y^2=9\)

\(\Rightarrow x^2+y^2=5\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.1=3\)

a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)

=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)

8 tháng 9 2016

Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):

\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)

                                                  \(\Rightarrow\) \(x-y=0\)

                                                  \(\Rightarrow\left(x-y\right)^3=0^3=0\)

NV
16 tháng 8 2021

Đề sai rồi, không thể tồn tại x; y sao cho \(\left\{{}\begin{matrix}x+y=3\\xy=5\end{matrix}\right.\) được

Vì \(\left(x+y\right)^2\ge4xy;\forall x;y\) nên \(3^2>4.5\) là vô lý

a: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2\cdot5=-1\)

b: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3\cdot3\cdot5=-18\)