Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Cho x,y > 0 và \(x+y=\sqrt{10}\) Tìm GTNN của : \(A=\left(1+x^4\right)\left(1+y^4\right)\) - Hoc24
Bài 1:
\(P=x\sqrt{3-x^2}=\sqrt{x^2}\cdot\sqrt{3-x^2}\)
\(=\sqrt{x^2\left(3-x^2\right)}\)\(\le\frac{x^2+3-x^2}{2}=\frac{3}{2}\)
Dấu = khi \(x=\sqrt{\frac{3}{2}}\)
Vậy MaxP=\(\frac{3}{2}\Leftrightarrow x=\sqrt{\frac{3}{2}}\)
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
ta có x+y=\(\sqrt{10}\)=>(x+y)^2=10
A=(x^4+1)(y^4+1)
=x^4.y^4+1+x^4+y^4+2x^2.y^2-2x^2.y^2
=x^4.y^4+1+(x^2+y^2)^2-2x^y^2=x^4.y^4+1+[(x+y)^2-2xy]
=x^4.y^4+1+(10-2xy)-2x^2.y^2
=x^4.y^4+1+100-40xy+4.x^2.y^2-2x^2.y^2
=x^4.y^4+101-40xy+2.x^2.y^2
=(x^4.y^4-8.x^2.y^2+16)+(10.x^2.y^2-40xy+40)+45
=(x^2.y^2-4)^2+10.(xy-2)^2+45\(\ge\)0
dấu = xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)
vậy Min A=45
\(\left\{{}\begin{matrix}x+y=\sqrt{10}\\x.y=2\end{matrix}\right.\)là nghiệm pt x^2-\(\sqrt{10}\)x+2
=>\(\Delta\)=(-\(\sqrt{10}\))^2-4.2=2>0
=>\(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)hoặc \(\left\{{}\begin{matrix}x=\dfrac{\sqrt{10}-\sqrt{2}}{2}\\y=\dfrac{\sqrt{10}+\sqrt{2}}{2}\end{matrix}\right.\)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
Ta có
(x4 + 1)(y4 + 1) = x4 y4 + y4 + x4 + 1
= x4 y4 + 1 + (x2 + y2)2 - 2x2 y2
= x4 y4 + 1 - 2x2 y2 + (10 - 2xy)2
= x4 y4 + 2x2 y2 - 40xy + 101
= (x4 y4 - 8x2 y2 + 16) + (10x2 y2 - 40xy + 40) + 45
= (x2 y2 - 4)2 + 10(xy - 2)2 + 45 \(\ge\)45
Đạt được khi \(\hept{\begin{cases}xy=2\\x+y=\sqrt{10}\end{cases}}\)
Bạn giải tiếp nhé
áp dụng BDT AM-GM \(=>x+y\ge2\sqrt{xy}=>\left(x+y\right)^2\ge4xy\left(1\right)\)
mà \(x+y\le1=>\left(x+y\right)^2\le1\left(2\right)\)
(1)(2)\(=>4xy\le\left(x+y\right)^2\le1=>4xy\le1=>xy\le\dfrac{1}{4}\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\sqrt{1+x^2y^2}\ge2\sqrt{\dfrac{1+x^2y^2}{xy}}=2\sqrt{\dfrac{1}{xy}+xy}\)
\(=2\sqrt{\dfrac{1}{xy}+16xy-15xy}=2\sqrt{2\sqrt{16}-\dfrac{15}{4}}=\sqrt{17}\)
dấu"=" xảy ra<=>\(x=y=\dfrac{1}{2}\)
\(1\ge x+y\ge2\sqrt{xy}\Rightarrow xy\le\dfrac{1}{4}\Rightarrow\dfrac{1}{xy}\ge4\)
Ta có:
\(A\ge\dfrac{2}{\sqrt{xy}}.\sqrt{1+x^2y^2}=2\sqrt{\dfrac{1}{xy}+xy}=2\sqrt{\left(xy+\dfrac{1}{16xy}\right)+\dfrac{15}{16}.\dfrac{1}{xy}}\)
\(A\ge2\sqrt{2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{16}.4}=\sqrt{17}\)
\(A_{min}=\sqrt{17}\) khi \(x=y=\dfrac{1}{2}\)
\(A=1+x^4+y^4+x^4y^4=1+\left(x^2+y^2\right)^2-2x^2y^2+x^4y^4\)
Đặt \(xy=t\Rightarrow\left\{{}\begin{matrix}0< t\le\frac{1}{4}\left(x+y\right)^2=\frac{5}{2}\\x^2+y^2=\left(x+y\right)^2-2xy=10-2t\end{matrix}\right.\)
\(\Rightarrow A=1+\left(10-2t\right)^2-2t^2+t^4\)
\(A=t^4+2t^2-40t+101=\left(t-2\right)^2\left(t^2+4t+14\right)+45\ge45\)
\(A_{min}=45\) khi \(t=2\)