Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=3\Rightarrow x+y+1=3xy\)
Áp dụng bất đẳng thức Cauchy-Schwarz, ta được: \(2\sqrt{3x^2+1}=\sqrt{4\left(3x^2+1\right)}=\sqrt{\left(3+1\right)\left(3x^2+1\right)}\ge3x+1\)
\(\Rightarrow\frac{2}{\sqrt{3x^2+1}}\le\frac{4}{3x+1}\)
Tương tự: \(\frac{2}{\sqrt{3y^2+1}}\le\frac{4}{3y+1}\)
Do đó \(A\le\frac{4}{3x+1}+\frac{4}{3y+1}=\frac{12\left(x+y\right)+8}{9xy+3x+3y+1}=\frac{12\left(x+y\right)+8}{\left(3+3x+3y\right)+3x+3y+1}=2\)
Đẳng thức xảy ra khi x = y = 1
2
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)
ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1
=> A ≥ 1
=> Min A =1 khi 1/3 ≤ x ≤ 2/3
2.
a/ Áp dụgn hệ quả bđt cô si,ta có :
\(A=xy+yz+zx\le\dfrac{\left(x+y+z\right)}{3}=\dfrac{a^2}{3}\)
Vậy GTLN A =a^2/3 khi x= y =z =a/3
b/Áp dụng BĐT Cô-Si dạng Engel,ta có :
\(B=\dfrac{x^2}{1}+\dfrac{y^2}{1}+\dfrac{z^2}{z}\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)
Vậy GTNN của B = a^2/2 khi x=y=z =a/3
\(B=\dfrac{3x}{1-x}+\dfrac{4\left(1-x\right)}{x}+7\ge2\sqrt{\dfrac{3x}{1-x}.\dfrac{4\left(1-x\right)}{x}}+7=7+4\sqrt{3}=\left(2+\sqrt{3}\right)^2\)
Vậy min B = \(\left(2+\sqrt{3}\right)^2\) khi \(\dfrac{3x}{1-x}=\dfrac{4\left(1-x\right)}{x}\Leftrightarrow x=\left(\sqrt{3}-1\right)^2\)
\(P=\dfrac{\sqrt{2x^2+y^2}}{xy}+\dfrac{\sqrt{2y^2+z^2}}{yz}+\dfrac{\sqrt{2z^2+x^2}}{xz}\)
\(P=\sqrt{\dfrac{2x^2+y^2}{x^2y^2}}+\sqrt{\dfrac{2y^2+z^2}{y^2z^2}}+\sqrt{\dfrac{2z^2+x^2}{x^2z^2}}\)
\(P=\sqrt{\dfrac{2}{y^2}+\dfrac{1}{x^2}}+\sqrt{\dfrac{2}{z^2}+\dfrac{1}{y^2}}+\sqrt{\dfrac{2}{x^2}+\dfrac{1}{z^2}}\)
\(P\ge\sqrt{\left(\dfrac{\sqrt{2}}{x}+\dfrac{\sqrt{2}}{y}+\dfrac{\sqrt{2}}{z}\right)^2+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}=3\)
\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)
\(\Leftrightarrow3< 1\) ( Vô lý )
\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)
\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)
\(\Leftrightarrow2b-2\sqrt{ab}< 0\)
\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)
Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)
\(\RightarrowĐpcm.\)
\(2a.\) Áp dụng BĐT Cauchy , ta có :
\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)
\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)
\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)
\(\Leftrightarrow x-4=a^2\)
\(\Leftrightarrow x=a^2+4\left(TM\right)\)
\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)
\(\Leftrightarrow x+4=x^2+4x+4\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)
KL....
\(3=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{xy}\Leftrightarrow x+y+1=3xy\)
\(\Leftrightarrow y\left(3x-1\right)=x+1\Leftrightarrow y=\dfrac{x+1}{3x-1}\)
\(\left(3x^2+1\right)\left(3+1\right)\ge\left(3x+1\right)^2\Rightarrow\sqrt{3x^2+1}\ge\dfrac{1}{2}\left(3x+1\right)\)
\(\Rightarrow\dfrac{2}{\sqrt{3x^2+1}}\le\dfrac{4}{3x+1}\)
\(\Rightarrow A\le\dfrac{4}{3x+1}+\dfrac{4}{3y+1}=\dfrac{4}{3x+1}+\dfrac{2\left(3x-1\right)}{3x+1}=\dfrac{6x+2}{3x+1}=2\)
\(A_{min}=2\) khi \(x=y=1\)