Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=3\Rightarrow x+y+1=3xy\)
Áp dụng bất đẳng thức Cauchy-Schwarz, ta được: \(2\sqrt{3x^2+1}=\sqrt{4\left(3x^2+1\right)}=\sqrt{\left(3+1\right)\left(3x^2+1\right)}\ge3x+1\)
\(\Rightarrow\frac{2}{\sqrt{3x^2+1}}\le\frac{4}{3x+1}\)
Tương tự: \(\frac{2}{\sqrt{3y^2+1}}\le\frac{4}{3y+1}\)
Do đó \(A\le\frac{4}{3x+1}+\frac{4}{3y+1}=\frac{12\left(x+y\right)+8}{9xy+3x+3y+1}=\frac{12\left(x+y\right)+8}{\left(3+3x+3y\right)+3x+3y+1}=2\)
Đẳng thức xảy ra khi x = y = 1
2
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{9x^2-6x+1}+\sqrt{9x^2-12x+4}\)
A= \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-2\right)^2}=\left|3x-1\right|+\left|3x-2\right|\)
ta có |3x-1|+|3x-2|=|3x-1|+|2-3x| ≥ |3x-1+2-3x|=1
=> A ≥ 1
=> Min A =1 khi 1/3 ≤ x ≤ 2/3
\(P=\dfrac{y}{x}+\dfrac{x}{y}+\left(\dfrac{x}{3y}+3xy+\dfrac{1}{3}+\dfrac{1}{3}\right)+12\left(xy+\dfrac{1}{9}\right)-2\)
\(P\ge2\sqrt{\dfrac{xy}{xy}}+4\sqrt[4]{\dfrac{3x^2y}{27y}}+12.2\sqrt{\dfrac{xy}{9}}-2\)
\(P\ge4\sqrt{\dfrac{x}{3}}+8\sqrt{xy}=4\left(2\sqrt{xy}+\sqrt{\dfrac{x}{3}}\right)=4\)
\(P_{min}=4\) khi \(x=y=\dfrac{1}{3}\)
ĐKXĐ : \(x,y>0\)
a) \(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right).\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
\(A=\left(\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right):\dfrac{x\sqrt{x}+y\sqrt{x}+x\sqrt{y}+y\sqrt{y}}{x\sqrt{xy}+y\sqrt{xy}}\)
\(A=\left(\dfrac{2}{\sqrt{xy}}+\dfrac{x+y}{xy}\right):\dfrac{\sqrt{x}\left(x+y\right)+\sqrt{y}\left(x+y\right)}{\sqrt{xy}\left(x+y\right)}\)
\(A=\dfrac{2\sqrt{xy}+x+y}{xy}.\dfrac{\sqrt{xy}\left(x+y\right)}{\sqrt{x}\left(x+y\right)+\sqrt{y}\left(x+y\right)}\)
\(A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{xy}}.\dfrac{x+y}{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(A=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\)
b) \(A=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}\ge\dfrac{2\sqrt[4]{xy}}{\sqrt{xy}}=\dfrac{2\sqrt[4]{16}}{\sqrt{16}}=1\) ( Cosi )
Vậy GTNN của A là \(1\) khi \(x=y=4\)
Chúc bạn học tốt ~
\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu \("="\Leftrightarrow x=y=z=1\)
\(3=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{xy}\Leftrightarrow x+y+1=3xy\)
\(\Leftrightarrow y\left(3x-1\right)=x+1\Leftrightarrow y=\dfrac{x+1}{3x-1}\)
\(\left(3x^2+1\right)\left(3+1\right)\ge\left(3x+1\right)^2\Rightarrow\sqrt{3x^2+1}\ge\dfrac{1}{2}\left(3x+1\right)\)
\(\Rightarrow\dfrac{2}{\sqrt{3x^2+1}}\le\dfrac{4}{3x+1}\)
\(\Rightarrow A\le\dfrac{4}{3x+1}+\dfrac{4}{3y+1}=\dfrac{4}{3x+1}+\dfrac{2\left(3x-1\right)}{3x+1}=\dfrac{6x+2}{3x+1}=2\)
\(A_{min}=2\) khi \(x=y=1\)