K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔOMA và ΔONA có 

OM=ON

\(\widehat{MOA}=\widehat{NOA}\)

OA chung

Do đó: ΔOMA=ΔONA

Suy ra: \(\widehat{MAO}=\widehat{NAO}\)

hay AO là tia phân giác của góc MAN

18 tháng 9 2023

a) Trong \(\Delta OAC\) có: \(\widehat {AOC}+\widehat {OAC}+\widehat {OCA}=180^0\)

Trong \(\Delta OBC\) có: \(\widehat {BOC}+\widehat {OBC}+\widehat {OCB}=180^0\)

Mà \(\widehat {AOC} = \widehat {BOC}\)(do Oz là phân giác góc xOy) và \(\widehat {CAO}=\widehat {CBO}\) 

Do đó, \(\widehat {OCA}=\widehat {OCB}\).

Xét \(\Delta OAC\) và \(\Delta OBC\) có:

\(\widehat {AOC} = \widehat {BOC}\) (cmt)

OC chung

\(\widehat {OCA} = \widehat {OCB}(cmt)\)

\(\Rightarrow \Delta OAC = \Delta OBC\)(g.c.g)

b) Do \(\Delta OAC = \Delta OBC\) nên AC=BC ( 2 cạnh tương ứng)

Vì \(\widehat {ACO}\) và \(\widehat {ACM}\) kề bù

    \(\widehat {BCO}\) và \(\widehat {BCM}\) kề bù

Mà \(\widehat {ACO} = \widehat {BCO}\) nên \(\widehat {ACM} = \widehat {BCM}\)

Xét \(\Delta MAC\) và \(\Delta MBC\) có:

AC=BC (cmt)

\(\widehat {ACM} = \widehat {BCM}\) (cmt)

CM chung

\( \Rightarrow \Delta MAC = \Delta MBC\)(c.g.c)

23 tháng 5 2022

`a,`

Xét $\Delta OAC$ và $\Delta ABC$ ta có `:`

`OA=OB(gt)`

\(\widehat{AOC}=\widehat{BOC}\) `( Oz` là tia phân giác \(\widehat{B}\) `)`

Chung `Oz`

`=>` $\Delta OAC$ `=` $\Delta ABC$ `(c.g.c)`

`=>` `{(\hat{OAC}=\hat{OBC} \text{( 2 góc tương ứng )}  ),(AC=BC \text{ (2 cạnh tương ứng)}):}` 

Từ `\hat{OAC}=\hat{OBC}`

`=>` `\hat{xAC}=\hat{yBC}` `(` kề bù với `2` góc bằng nhau `)`

`b,` Xem lại đề bài `: OC=OB?` 

23 tháng 5 2022

xem lại đề câu `b,` nha bn 

28 tháng 2 2019

o x y z A B C D M

28 tháng 2 2019

bÂY GIỜ CÂU 1 MÌNH ĐÃ LÀM ĐC NHƯ THẾ NÀY RỒI

28 tháng 6 2017

Xét \(\Delta\)AOM và \(\Delta\)BOM có:

OA=OB (gt)

góc AOM=góc BOM (do Oz là phân giác góc xOy)

OM chung

=>  \(\Delta\)AOM = \(\Delta\)BOM (c.g.c) (1)

(1) => góc AMO=góc BMO (2 góc tương ứng)

=> MO là phân giác góc AMB (dpcm)

(1) => AM=BM (2 góc tương ứng)

=>  \(\Delta\)ABM cân tại M (dhnb)

Xét \(\Delta\)ABM cân tại M có tia phân giác MO đồng thời là đường trung trực của cạnh AB (t/c các đường đặc biệt trong \(\Delta\)cân) (dpcm)

18 tháng 8 2019

a, Vì Oz là tia phân giác của xOy

=> xOz = zOy = xOy/2 = 60o/2 = 30o

b, Xét △OIA và △ OIB

Có: OA = OB 

      AOI = IOB

      OT là cạnh chung

=>  △OIA = △OIB (c.g.c)

c, Vì △OIA = △OIB

=> AIO = OIB (2 góc tương ứng)

Mà AIO + OIB = 180(2 góc kề bù)

=> AIO = OIB = 90o  

=> OI vuông góc AB

18 tháng 8 2019

Hình dễ tự vẽ

a ) Oz là tia p/g của góc xOy => \(\widehat{xOz}=\widehat{zOy}=\frac{1}{2}.\widehat{xOy}=30^o\)

=> góc zOy = 30 độ

b ) Xét tam giác OIA và tam giác OIB có :

OA = OB ( gt )

\(\widehat{xOz}=\widehat{zOy}\)( Oz là tia p/g của góc xOy )

OI là cạnh chung

=> Tam giác OIA = Tam giác OIB ( c.g.c )

b ) Do tam giác OIA = tam giác OIB ( cm trên ) => \(\widehat{OIA}=\widehat{OIB}\)

Ta có :

\(\widehat{OIA}+\widehat{OIB}=180^o\)( hai góc kề bù )

\(\widehat{OIA}+\widehat{OIA}=180^o\)

\(\widehat{OIA}.2=180^o\)

=> \(\widehat{OIA}=90^o\)

=> OI vuông góc với AB 

a) ta có \(OP+PQ=OQ\)

\(OM+MN=ON\)

mà \(OP=OM;PQ=MN\)

\(\Rightarrow OQ=ON\)

Xét \(\Delta NOPvà\Delta QOMcó\)

\(OP=OM\) ( giả thiết )

\(\widehat{QON}\) là góc chung

\(OQ=ON\) (chứng minh trên)

\(\Rightarrow\Delta NOP=\Delta QOM\left(c-g-c\right)\)

vậy \(\Delta NOP=\Delta QOM\)

b) tự làm nhé