Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left\{{}\begin{matrix}x-y=a\\z-x=b\\y-z=c\end{matrix}\right.\) đề bài trở thành \(\left\{{}\begin{matrix}abc\ne0\\a+b+c=0\\ab=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}c=-\left(a+b\right)\\b=-\frac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{c^2}=\frac{1}{\left(a+b\right)^2}\\b^2=\frac{1}{a^2}\end{matrix}\right.\)
Ta cần chứng minh \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge4\)
\(P=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\frac{1}{a^2}+a^2+\frac{1}{\left(a-\frac{1}{a}\right)^2}\)
\(P=\left(a-\frac{1}{a}\right)^2+\frac{1}{\left(a-\frac{1}{a}\right)^2}+2\ge2\sqrt{\left(a-\frac{1}{a}\right)^2.\frac{1}{\left(a-\frac{1}{a}\right)^2}}+2=4\) (đpcm)
Lời giải:
Từ điều kiện $xyz=1$ ta có:
\(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x+y+z=xy+yz+xz\)
\(\Leftrightarrow x+y+z-xy-yz-xz+xyz-1=0\)
\(\Leftrightarrow x(1-y)+(y+z-yz-1)+(xyz-xz)=0\)
\(\Leftrightarrow x(1-y)+(1-y)(z-1)-xz(1-y)=0\)
\(\Leftrightarrow (1-y)(x+z-1-xz)=0\)
\(\Leftrightarrow (1-y)(1-x)(z-1)=0\)
\(\Leftrightarrow (x-1)(y-1)(z-1)=0\)
Khi đó:
\(P=(x^{19}-1)(y^5-1)(z^{1890}-1)=(x-1)(x^{18}+x^{17}+...+1)(y-1)(y^4+...+1)(z-1)(z^{1889}+...+1)\)
\(=(x-1)(y-1)(z-1).A=0\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
Theo bài ra ta có: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\Rightarrow x+y+z=xyz\)
Do:\(\sqrt{yz\left(1+x^2\right)}=\sqrt{yz+x^2yz}=\sqrt{yz+x\left(x+y+z\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
Tương tự: \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\);
\(\sqrt{zx\left(1+y^2\right)}=\sqrt{\left(z+y\right)\left(x+y\right)}\)
\(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\)
\(A=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}+\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\)
Áp dụng bất đẳng thức Cô si \(\frac{a+b}{2}\ge\sqrt{ab}\), dấu "=" xảy ra khi \(a=b\)
Ta có \(\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)\);
\(\sqrt{\frac{y}{x+y}.\frac{y}{y+z}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)\);
\(\sqrt{\frac{z}{x+z}.\frac{z}{y+z}}\le\frac{1}{2}\left(\frac{z}{x+z}+\frac{z}{y+z}\right)\)
\(A\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+z}+\frac{y}{y+x}+\frac{z}{y+z}+\frac{z}{x+z}\right)=\frac{3}{2}\)
Vậy \(A\le\frac{3}{2}\). Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)
M giải thích cho t chỗ sao mà \(\sqrt{xy\left(1+z^2\right)}=\sqrt{\left(z+y\right)\left(x+z\right)}\) đc vậy?
Với cả từ dòng này xuống dòng này nữa.
Sao mà tin đc dấu " = " xảy ra khi nào vậy?
Ta đặt \(\left\{\begin{matrix}x+z=a\\y+z=b\end{matrix}\right.\Rightarrow ab=1\)
\(BĐT\Leftrightarrow\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge4\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{a^2}+\frac{1}{b^2}=\frac{1}{\left(a-\frac{1}{a}\right)^2}+a^2+\frac{1}{a^2}\)
\(=\frac{1}{\left(a-\frac{1}{a}\right)^2}+\left(a-\frac{1}{a}\right)^2+2\)
\(\ge2+2=4\)