Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐK phải là $x,y>1$. Nếu $x,y=1$ thì vi phạm ĐKXĐ rồi bạn nhé.
Áp dụng BĐT AM-GM cho các số dương:
\(\frac{x}{\sqrt{y}-1}+4(\sqrt{y}-1)\geq 4\sqrt{x}\)
\(\frac{y}{\sqrt{x}-1}+4(\sqrt{x}-1)\geq 4\sqrt{y}\)
Cộng theo vế và rút gọn ta có:
\(A\geq 8\)
Vậy GTNN của $A$ là $8$. Dấu "=' xảy ra khi $x=y=4$
\(y=\frac{x-1+3\sqrt{x-1}+2}{x-1+4\sqrt{x-1}+3}\)
đặt x-1=a(a>=0)
=>\(y=\frac{a+3\sqrt{a}+2}{a+4\sqrt{a}+3}\)
=>\(\left(y-1\right)a+\left(4y-3\right)\sqrt{a}+3y-2=0\)
đến đây dùng pp tìm miền giá trị tìm y là ra
https://loga.vn/bai-viet/ve-phuong-phap-mien-gia-tri-de-tim-gtln-gtnn-4059
Lời giải:
Áp dụng BĐT Bunhiacopxky ta có:
$(x\sqrt{y-1}+y\sqrt{x-1})^2=(\sqrt{x}.\sqrt{xy-x}+\sqrt{y}.\sqrt{yx-y})^2$
$\leq (x+y)(xy-x+xy-y)\leq \left(\frac{x+y+xy-x+xy-y}{2}\right)^2=(xy)^2$
$\Rightarrow x\sqrt{y-1}+y\sqrt{x-1}\leq xy$ (đpcm)
Dấu "=" xảy ra khi $x=y=2$
\(x.1.\sqrt{y-1}+y.1.\sqrt{x-1}\le\frac{x}{2}\left(1+y-1\right)+\frac{y}{2}\left(1+x-1\right)=xy\)
Dấu "=" xảy ra khi \(x=y=2\)
Áp dụng bđt Cauchy : \(\sqrt{\left(y-1\right).1}\le\frac{y-1+1}{2}=\frac{y}{2}\Rightarrow x\sqrt{y-1}\le\frac{xy}{2}\)
\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\Rightarrow y\sqrt{x-1}\le\frac{xy}{2}\)
Cộng hai BĐT trên theo vế ta có đpcm
\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)
\(S\ge\frac{4\left(x+y\right)^2}{x^2+y^2+2xy}+\frac{\left(x+y\right)^2}{\frac{\left(x+y\right)^2}{2}}=\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\) khi \(x=y\)
Tham khảo:
Cho 3 số thức x,y,z thỏa mãn \(x\ge1;y\ge4;z\ge9\) tìm giá trị lớn nhất của biết thức Q=\(\dfrac{yz\sqrt{x-1}+zx\sqrt... - Hoc24
Ta có
\(\frac{\sqrt{y-1}}{y}\le\frac{1+y-1}{2y}=\frac{1}{2}\)
\(\frac{\sqrt{x-1}}{x}\le\frac{1}{2}\)
\(\Rightarrow A\le1\)
Đạt được khi x = y = 2
cái này mk chưa hok nên ko thể giải!!!!!!! mong bạn thông cảm ^^
547476576578587592375632252535653256205155916524235598354641545622
theo bất đẳng thức bunhiacopxki ta có
3\(\sqrt{x-1}\)+4\(\sqrt{y-1}\)\(\le\)\(\sqrt{\left(3^2+4^2\right)\left(x-1+y-1\right)}\)=5\(\sqrt{x+y-2}\)
<=>1\(\le\sqrt{x+y-2}\)
<=>1\(\le\)x+y-2
<=>x+y\(\ge\)3
\(x+y=3\)