Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Liên Mỹ - Toán lớp 9 - Học toán với OnlineMath
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(A^2=(x\sqrt{y-1}+y\sqrt{x-1})^2=(\sqrt{x}\sqrt{xy-x}+\sqrt{y}\sqrt{xy-y})^2\)
\(\leq (x+y)(xy-x+xy-y)=(x+y)(2xy-x-y)\)
Áp dụng BĐT AM-GM:
\((x+y)(2xy-x-y)\leq \left (\frac{x+y+2xy-x-y}{2}\right)^2=(xy)^2\)
Do đó, \(A^2\leq (xy)^2\Leftrightarrow A\leq xy\) (đpcm)
Dấu bằng xảy ra khi \(x=y=2\)
Đặt \(A=\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\)
\(\Rightarrow A=\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)
\(\Rightarrow A=\frac{2.\sqrt{z-1}}{2z}+\frac{2.\sqrt{2}.\sqrt{y-2}}{2.\sqrt{2}.y}+\frac{2.\sqrt{3}.\sqrt{x-3}}{2.\sqrt{3}.x}\)\
\(\Rightarrow A\le\frac{z-1+1}{2z}+\frac{y-2+2}{2\sqrt{2}.y}+\frac{z-3+3}{2\sqrt{3}.x}\) ( ÁP DỤNG BĐT CÔ-SI )
\(\Rightarrow A\le\frac{z}{2z}+\frac{y}{2\sqrt{2}.y}+\frac{z}{2\sqrt{3}.z}\)
\(\Rightarrow A\le\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)
Ta có: \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{xy}\right)\ge0\)
\(\Leftrightarrow\frac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\frac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)\ge0\)
\(\Leftrightarrow\left(y-x\right)\left(x+xy^2-y-x^2y\right)\ge0\)
\(\Leftrightarrow\left(y-x\right)^2\left(xy-1\right)\ge0\)(đúng với mọi x,y>=1)
Bài này mình làm rồi
Nếu bn tik cho mik có thể mik sẽ nhớ
mk mới học lớp 7 thôi mà