K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

sai đề phải ko nhỉ,\(2\sqrt{x}+\sqrt{y}=1\) thì áp dụng Bunhiacopkxi,còn trừ thì mình chịu.

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(2.\sqrt{x}+1.\sqrt{y}\right)^2\le\left(2^2+1^2\right)\left(x+y\right)\)

<=> \(5\left(x+y\right)\ge1\Leftrightarrow x+y\ge\dfrac{1}{5}\)

Dấu ''='' xảy ra <=> x=4/25 và y=1/25

NV
10 tháng 5 2021

Đề bài sai, sửa đề: \(2\le\sqrt{x^2+y^2}+\sqrt{xy}\le\sqrt{6}\)

Đặt \(P=\sqrt{x^2+y^2}+\sqrt{xy}>0\)

\(\Rightarrow P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}\ge x^2+y^2+xy+2\sqrt{2xy.xy}\)

\(\Rightarrow P^2\ge x^2+y^2+\left(2\sqrt{2}+1\right)xy\ge x^2+y^2+2xy=4\)

\(\Rightarrow P\ge2\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(2;0\right);\left(0;2\right)\)

Lại có: \(P^2=x^2+y^2+xy+2\sqrt{\left(x^2+y^2\right)xy}=x^2+y^2+xy+\sqrt{4xy.\left(x^2+y^2\right)}\)

\(\Rightarrow P^2\le x^2+y^2+xy+\dfrac{1}{2}\left(4xy+x^2+y^2\right)=\dfrac{3}{2}\left(x+y\right)^2=6\)

\(\Rightarrow P\le\sqrt{6}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\dfrac{3-\sqrt{3}}{3};\dfrac{3+\sqrt{3}}{3}\right)\)

Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

=1

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Đề bài sai với $x=0; y=z=1$

15 tháng 10 2021

1: \(A=\dfrac{x-2\sqrt{xy}+y}{x-y}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)

2: Thay \(x=3+2\sqrt{2}\) và \(y=3-2\sqrt{2}\) vào A, ta được:

\(A=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

Ta có: \(A-3\)

\(=\dfrac{x+5-3\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{x-3\sqrt{x}+2}{\sqrt{x}+1}\ge0\forall x\) thỏa mãn ĐKXĐ

hay A\(\ge3\)

a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2

c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

NV
18 tháng 4 2021

Đề bài chắc chắn là có vấn đề

Thử với \(x=y=z=\dfrac{1}{3}\) thì \(VT=\dfrac{\sqrt{2}}{4}< 2\)

NV
18 tháng 4 2021

Như bạn sửa điều kiện thành \(x^3+y^3+z^3=1\) thì dấu "=" không xảy ra

Việc chứng minh vế trái lớn hơn 2 (một cách tuyệt đối) khá đơn giản:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

Làm tương tự với 2 số hạng còn lại, sau đó cộng vế

Nhưng đẳng thức không xảy ra.