Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT cần chứng minh tương đương với : \(\frac{\left(x+z\right)^2}{xz}\ge\frac{y\left(x+z\right)}{xz}+\frac{x+z}{y}\)
\(\Leftrightarrow\frac{x+z}{xz}\ge\frac{y}{xz}+\frac{1}{y}\Leftrightarrow y\left(x+z\right)\ge y^2+xz\)
\(\Leftrightarrow y^2-y\left(x+z\right)+xz\le0\Leftrightarrow\left(y-x\right)\left(y-z\right)\le0\) ( luôn đúng vì \(z\ge y\ge x>0\))
Vậy BĐT đã được chứng minh khi x = y = z
Áp dụng liên tiếp bđt AM-GM cho 2 số dương ta có:
A = \(\left(xyz+1\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\)\(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=\left(xy+\frac{y}{x}\right)+\left(yz+\frac{z}{y}\right)+\)\(\left(xz+\frac{x}{z}\right)+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(\ge2\sqrt{xy.\frac{y}{x}}+2\sqrt{yz.\frac{z}{y}}+2\sqrt{xz.\frac{x}{z}}+\)\(+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(A\ge2y+2z+2x+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)\(=x+y+z+\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+\left(z+\frac{1}{z}\right)\)
\(A\ge x+y+z+2\sqrt{x.\frac{1}{x}}+2\sqrt{y.\frac{1}{y}}+\)\(2\sqrt{z.\frac{1}{z}}=x+y+z+2.3=x+y+z+6\)(đpcm)
Dấu "=" xảy ra khi x = y = z = 1
\(z\ge x+y\Rightarrow\frac{z}{x+y}\ge1\)
\(VT=\left(x^2+y^2+z^2\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
\(VT\ge\left(\frac{1}{2}\left(x+y\right)^2+z^2\right)\left(\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2+\frac{1}{z^2}\right)\)
\(VT\ge\left(\frac{1}{2}\left(x+y\right)^2+z^2\right)\left(\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right)\)
\(VT\ge\frac{1}{2}\left(\frac{x+y}{z}\right)^2+8\left(\frac{z}{x+y}\right)^2+5\)
\(VT\ge\frac{1}{2}\left(\frac{x+y}{z}\right)^2+\frac{1}{2}\left(\frac{z}{x+y}\right)^2+\frac{15}{2}\left(\frac{z}{x+y}\right)^2+5\)
\(VT\ge\frac{1}{2}.2\sqrt{\left(\frac{x+y}{z}\right)^2\left(\frac{z}{x+y}\right)^2}+\frac{15}{2}.1^2+5=\frac{27}{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{z}{2}\)
đặt \(P=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
\(=\frac{yz}{x^2\left(y+z\right)}+\frac{zx}{y^2\left(z+x\right)}+\frac{xy}{z^2\left(x+y\right)}\)
áp dụng bất đẳng thức cô si ta có:
\(\frac{yz}{x^2\left(y+z\right)}+\frac{y+z}{4yz}\ge\frac{1}{x};\frac{zx}{y^2\left(z+x\right)}+\frac{z+x}{4zx}\ge\frac{1}{y};\frac{xy}{z^2\left(x+y\right)}+\frac{x+y}{4xy}\ge\frac{1}{z}\)
\(\Rightarrow P+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Rightarrow P\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{2}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=\frac{3}{2}\left(Q.E.D\right)\)
dấu bằng xảy ra khi x=y=z=1
Từ \(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a,b,c\right)\) thì có
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{b^3}{\left(a+1\right)\left(c+1\right)}+\frac{a^3}{\left(b+1\right)\left(c+1\right)}\ge\frac{1}{16}\)\(\forall\hept{\begin{cases}a+b+c=1\\a,b,c>0\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{64}+\frac{c+1}{64}\ge\frac{3a}{16}\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế
\(VT+\frac{2\left(a+b+c+3\right)}{64}\ge\frac{3\left(a+b+c\right)}{16}\Leftrightarrow VT\ge\frac{1}{16}\)
Khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
https://olm.vn/hoi-dap/detail/238943826197.html . tương tự nha bạn đều ở phần giả sử tráo đổi 1 tí