Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B = \(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)
\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\) (1)
Từ \(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)
=>\(a^2x^2+b^2y^2+c^2z^2+2\left(bcyz+acxz+abxy\right)=0\)
=>\(a^2x^2+b^2y^2+c^2z^2=-2\left(bcyz+acxz+abxy\right)\) (2)
Thay (2) vào (1) ta được:
\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)
\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)
Vậy \(A=\frac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)
Lời giải:
Từ \(ax+by+cz=0\Rightarrow (ax+by+cz)^2=0\)
\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2(axby+axcz+bycz)\)
\(=-2(bcyz+cazx+abxy)\)
Khi đó:
\(bc(y-z)^2+ca(z-x)^2+ab(x-y)^2=bc(y^2-2yz+z^2)+ca(z^2-2zx+x^2)+ab(x^2-2xy+y^2)\)
\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)-(2bcyz+2cazx+2abxy)\)
\(=(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2)+(a^2x^2+b^2y^2+c^2z^2)\)
\(=ax^2(a+b+c)+by^2(a+b+c)+cz^2(a+b+c)=(a+b+c)(ax^2+by^2+cz^2)\)
Do đó:
\(\frac{ax^2+by^2+cz^2}{bc(y-z)^2+ca(z-x)^2+ab(x-y)^2}=\frac{ax^2+by^2+cz^2}{(ax^2+by^2+c^2)(a+b+c)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2019}}=2019\)
Ta có đpcm.
Rồng Con: bạn ghép nhóm thì nó ra thế á.
\(bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)
\(=(bcy^2+aby^2+b^2y^2)+(bcz^2+caz^2+c^2z^2)+(cax^2+abx^2+a^2x^2)\)
\(=by^2(c+a+b)+cz^2(b+a+c)+ax^2(c+b+a)\)
\(=(a+b+c)(ax^2+by^2+cz^2)\)
Ý tưởng là bạn tìm những cái có cùng $ax^2,by^2,cz^2$ để nhóm với nhau, cuối cùng ra 1 biểu thức có chứa $ax^2+by^2+cz^2$ liên quan đến tử để triệt tiêu ^^
Đặt \(A=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+cz\left(z-x\right)}\)
Từ ax+by+cz=0
=>(ax+by+cz)2=0
=>a2x2+b2y2+c2z2+2axby+2bycz+2czax=0
=>a2x2+b2y2+c2z2=-2(ax+by+byca+czax)
Xét mẫu thức: \(ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2\)
\(=ab\left(x^2-2xy+y^2\right)+bc\left(y^2-2yz+z^2\right)+ca\left(z^2-2zx+x^2\right)\)
\(=abx^2-2abxy+aby^2+bcy^2-2bcyz+bcz^2+caz^2-2cazx+cax^2\)
\(=\left(abx^2+bcz^2\right)+\left(aby^2+acz^2\right)+\left(acx^2+bcy^2\right)-2\left(abxy+bcyz+cazx\right)\)
\(=\left(aby^2+acz^2\right)+\left(abx^2+bcz^2\right)+\left(acx^2+bcy^2\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=\left(a^2x^2+aby^2+acz^2\right)+\left(abx^2+b^2y^2+bcz^2\right)+\left(acx^2+bcy^2+c^2z^2\right)\)
\(=a\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+c\left(ax^2+by^2+cz^2\right)\)
\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
Do đó: \(A=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2018}}=2018\) (dpcm)
Ta có : \(x=a^2-bc\Rightarrow ax=a^3-abc\); \(y=b^2-ac\Rightarrow by=b^3-abc\); \(z=c^2-ab\Rightarrow cz=c^3-abc\)
\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)
Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)
Vậy : \(\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\)(đpcm)
Bạn lưu ý đề bài ở chỗ \(y^2=b^2-ac\)bạn ghi sai nhé, phải là \(y=b^2-ac\)
Bạn nhớ ghi thêm điều kiện x,y,z khác 0 nữa nhé :))