Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c, Ta có: \(\frac{x}{3}=\frac{y}{6}\) và \(4x-y=42\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{6}=\frac{4x-y}{12-6}=\frac{42}{6}=7\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=7\Rightarrow x=7.3=21\\\frac{y}{6}=7\Rightarrow y=7.6=42\end{matrix}\right.\)
Vậy \(x=21\) và \(y=42\)
# Băng
i) Ta có: \(\frac{x}{3}=\frac{y}{6}.\)
=> \(\frac{x}{3}=\frac{y}{6}\) và \(x+y=90.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{3}=\frac{y}{6}=\frac{x+y}{3+6}=\frac{90}{9}=10.\)
\(\left\{{}\begin{matrix}\frac{x}{3}=10\Rightarrow x=10.3=30\\\frac{y}{6}=10\Rightarrow y=10.6=60\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(30;60\right).\)
ii) Ta có: \(\frac{x}{3}=\frac{y}{6}.\)
=> \(\frac{4x}{12}=\frac{y}{6}\) và \(4x-y=42.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{4x}{12}=\frac{y}{6}=\frac{4x-y}{12-6}=\frac{42}{6}=7.\)
\(\left\{{}\begin{matrix}\frac{x}{3}=7\Rightarrow x=7.3=21\\\frac{y}{6}=7\Rightarrow y=7.6=42\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;42\right).\)
Chúc bạn học tốt!
2,Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì x+y=90 nên:3k+6k=90
\(\Leftrightarrow\)k(3+6)=90
9k=90
k=90:9=10
Suy ra k=10\(\hept{\begin{cases}x=3.10=30\\y=6.10=60\end{cases}}\)
3,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì 4x-y=42 nên:4.3k-6k=42
\(\Leftrightarrow\) 12k-6k=42
6k=42
k=42:6=7
Suy ra k=7\(\hept{\begin{cases}x=3.7=21\\y=6.7=42\end{cases}}\)
4,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì xy=162 nên:3k.6k=162
\(\Leftrightarrow\)k2.18=162
k2=162:18
k2=9
k=\(\pm\)3
Với k=3\(\hept{\begin{cases}x=3.3=9\\y=6.3=18\end{cases}}\)
Với k=-3\(\hept{\begin{cases}x=3.\left(-3\right)=-9\\y=6.\left(-3\right)=-18\end{cases}}\)
5,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì 2x2-y2=-8 nên:2.(3k)2-(6k)2=-8
\(\Leftrightarrow\)2.9k2-36k2=-8
18k2-36k2=-8
-18k2=-8
k2=-8/-18=4/9
k=\(\pm\)\(\frac{2}{3}\)
Với k=\(\frac{2}{3}\)\(\hept{\begin{cases}x=\frac{2}{3}.3=2\\y=\frac{2}{3}.6=4\end{cases}}\)
Với k=\(\frac{-2}{3}\)\(\hept{\begin{cases}x=\frac{-2}{3}.3=-2\\y=\frac{-2}{3}.6=-4\end{cases}}\)
6,
Đặt \(\frac{x}{3}=\frac{y}{6}\)\(=k\)
Ta có x=3k; y=6k
Vì x-y=9 nên:3k-6k=9
\(\Leftrightarrow\) -3k=9
k=9:(-3)
k=-3
Suy ra\(\hept{\begin{cases}x=-3.3=-9\\y=-3.6=-18\end{cases}}\)
a) \(a\left(b+1\right)=3\left(a;b\inℤ\right)\)
\(\Rightarrow a;\left(b+1\right)\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(-1;-4\right);\left(1;2\right);\left(-3;-2\right);\left(3;0\right)\right\}\)
b) \(2n+7⋮n+1\left(n\inℤ\right)\)
\(\Rightarrow2n+7-2\left(n+1\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-2;0;-6;4\right\}\)
c) \(xy+x-y=6\left(x;y\inℤ\right)\)
\(\Rightarrow x\left(y+1\right)-y-1+1=6\)
\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y+1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-0;-6\right);\left(2;4\right);\left(-4;-2\right);\left(6;0\right)\right\}\)
a: Đặt x/5=y/2=k
=>x=5k;y=2k
Ta có: xy=90
\(\Leftrightarrow10k^2=90\)
\(\Leftrightarrow k^2=9\)
Trường hợp 1: k=3
=>x=15; y=6
Trường hợp 2: k=-3
=>x=-15; y=-6
b: 4x=-5y
nên \(\dfrac{x}{-5}=\dfrac{y}{4}=k\)
=>x=-5k; y=4k
xy=-80
\(\Leftrightarrow-20k^2=-80\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=-10; y=8
Trường hợp 2: k=-2
=>x=10; y=-8
c: Đặt x/7=y/-2=k
=>x=7k; y=-2k
\(x^2y=-98\)
\(\Leftrightarrow49k^2\cdot\left(-2k\right)=-98\)
=>k=1
=>x=7; y=-2
d: Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=k\)
=>x=2k; y=3k; z=5k
Ta có: xyz=-30
\(\Leftrightarrow30k^3=-30\)
=>k=-1
=>x=-2; y=-3; z=-5
a/Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{x+y}{3+6}=\dfrac{90}{9}=10\)
\(\Rightarrow\left\{{}\begin{matrix}x=10\cdot3=30\\y=10\cdot6=60\end{matrix}\right.\)
Vậy ...
b/Ta có:
\(\dfrac{x}{3}=\dfrac{4x}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{4x}{12}=\dfrac{y}{6}=\dfrac{4x-y}{12-6}=\dfrac{42}{6}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7\cdot3=21\\y=7\cdot6=42\end{matrix}\right.\)
Vậy ...
c/Đặt \(x=k;y=k\) ( k \(\in\) N* )
\(\Rightarrow x=3k;=6k\)
Mà \(xy=162\)
\(\Rightarrow3k\cdot6k=162\)
\(\Rightarrow18k^2=162\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\cdot3=9\\x=\left(-3\right)\cdot3=-9\\y=3\cdot6=18\\y=\left(-3\right)\cdot6=-18\end{matrix}\right.\)
Vậy ...
#NoSimp