Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(1\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(1\Leftrightarrow x^2+\frac{\left(b^2+c^2\right)x^2}{a^2}+y^2+\frac{\left(a^2+c^2\right)y^2}{b^2}+z^2+\frac{\left(a^2+b^2\right)z^2}{c^2}=x^2+y^2+z^2\)
\(\Leftrightarrow\frac{\left(b^2+c^2\right)x^2}{a^2}+\frac{\left(c^2+a^2\right)y^2}{b^2}+\frac{\left(a^2+b^2\right)z^2}{c^2}=0\)
Ta thấy rằng cả 3 phân số đó đều \(\ge0\)nên tổng 3 phân số sẽ \(\ge0\)
Dấu = xảy ra khi x = y = z = 0
Với x = y = z = 0 thì
\(\frac{x^{2016}}{a^{2016}}+\frac{y^{2016}}{b^{2016}}+\frac{z^{2016}}{c^{2016}}=\frac{x^{2016}+y^{2016}+z^{2016}}{a^{2016}+b^{2016}+c^{2016}}\Leftrightarrow\frac{0}{a^{2016}}+\frac{0}{b^{2016}}+\frac{0}{c^{2016}}=\frac{0+0+0}{a^{2016}+b^{2016}+c^{2016}}\)
\(\Leftrightarrow0=0\)(đúng)
\(\Rightarrow\)ĐPCM
Lời giải:
Ta có:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Rightarrow x^2+y^2+z^2=\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)(a^2+b^2+c^2)\)
\(\Leftrightarrow x^2+y^2+z^2=x^2+\frac{x^2b^2}{a^2}+\frac{x^2c^2}{a^2}+y^2+\frac{y^2a^2}{b^2}+\frac{y^2c^2}{b^2}+z^2+\frac{z^2a^2}{c^2}+\frac{z^2b^2}{c^2}\)
\(\Leftrightarrow \frac{x^2b^2}{a^2}+\frac{x^2c^2}{a^2}+\frac{y^2a^2}{b^2}+\frac{y^2c^2}{b^2}+\frac{z^2a^2}{c^2}+\frac{z^2b^2}{c^2}=0(*)\)
Bởi vì mỗi số hạng trong tổng $(*)$ đều là những số không âm, cho nên để tổng các số không âm bằng $0$ thì bản thân mỗi số đó phải bằng $0$
Do đó:
\(\Leftrightarrow \frac{x^2b^2}{a^2}=\frac{x^2c^2}{a^2}=\frac{y^2a^2}{b^2}=\frac{y^2c^2}{b^2}=\frac{z^2a^2}{c^2}=\frac{z^2b^2}{c^2}=0\)
Do $a,b,c\neq 0$ nên \(x^2=y^2=z^2=0\Rightarrow x=y=z=0\)
Khi đó:\(T=x^{2016}+y^{2016}+z^{2016}=0\)
Ta có:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow x^2.\frac{b^2+c^2}{a^2+b^2+c^2}+y^2.\frac{a^2+c^2}{a^2+b^2+c^2}+z^2.\frac{a^2+b^2}{a^2+b^2+c^2}=0\)
Vì a, b, c khác 0 nên dấu bằng xảy ra khi \(x=y=z=0\)
\(\Rightarrow M=x^{2016}+y^{2016}+z^{2016}=0^{2016}+0^{2016}+0^{2016}=0\)
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}+\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\)\(+\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}=0\)
\(x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\)\(+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\)\(=0\)
Vì \(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\ne0,\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\ne0\)\(,\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\ne0\) và \(a,b,c\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\\z^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)\(\Rightarrow T=0\)
Cô ơi em có cách khác ạ :)
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
Dấu "=" xảy ra tại x=y=z=0
Khi đó T=0
Ta có:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
<=> \(\left(a^2+b^2+c^2\right)\)\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
<=> \(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\frac{x^2}{a^2}+\left(a^2+b^2+c^2\right)\frac{y^2}{b^2}+\left(a^2+b^2+c^2\right)\frac{z^2}{c^2}\)
<=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)
vì a, b , c khác 0 nên \(\frac{\left(b^2+c^2\right)}{a^2};\frac{\left(c^2+a^2\right)}{b^2};\frac{\left(b^2+a^2\right)}{c^2}\ne0\)
\(\frac{\left(b^2+c^2\right)}{a^2}x^2\ge0;\frac{\left(a^2+c^2\right)}{b^2}y^2\ge0;\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x, y, z
=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x; y; z
Do đó: \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)
=> x = y = z = 0
Vậy T = 0