Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{k.\left(2-5+7\right)}{k.\left(2+10-7\right)}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
đặt x/2=y/6=z/7=k
suy ra x-y+z/x+2-z = 2k-5k+7k/2k10+7k = k(2-5+70/k(2+10-70 = 4/5
vậy A=4/5
Đặt: \(\frac{x}{2}\)+\(\frac{y}{5}\)+\(\frac{z}{7}\)=k
=>x=2k; y=5k; z=7k
Theo bài ra ta có:
A=\(\frac{x-y+z}{x-2y-z}\)=\(\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}\)=\(\frac{4k}{5k}\)=\(\frac{4}{5}\)
=>A=\(\frac{4}{5}\)
theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}=\frac{x-y+z}{2-5+7}=\frac{x+2y-z}{2+10-7}=\frac{x-y+z}{4}=\frac{x+2y-z}{5}\)
=>\(\frac{x-y+z}{4}=\frac{x+2y-z}{5}\)
theo tính chất tỉ lệ thức ta có;
\(\frac{x-y+z}{4}=\frac{x+2y-z}{5}\Rightarrow\frac{4}{5}=\frac{x-y+z}{x+2y-z}\)
vậy A = \(\frac{4}{5}\)
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k,y=5k,z=7k\)
Ta có: \(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{k\left(2-5+7\right)}{2k+10k-7k}=\frac{k4}{\left(2+10-7\right)k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
Cho \(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}\) tìm giá trị của bểu thức A= \(\dfrac{x-y+z}{x+2y-z}\)
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=5k\\z=7k\end{matrix}\right.\)
\(A=\dfrac{x-y+z}{x+2y-z}=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{4}{5}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x-y+z}{4}=\dfrac{x+2y-z}{5}\Leftrightarrow A=\dfrac{4}{5}\)
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\). Tính giá trị của biểu thức A = \(\frac{x-y+z}{x+2y-z}\)
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k,y=5k,z=7k\)
Ta có: \(A=\frac{x-y+z}{x+2y-z}\)
\(\Rightarrow A=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{k\left(2-5+7\right)}{2k+10k-7k}=\frac{4k}{\left(2+10-7\right)k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)