K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{k.\left(2-5+7\right)}{k.\left(2+10-7\right)}=\frac{4}{5}\)

Vậy \(A=\frac{4}{5}\)

16 tháng 7 2019

đặt x/2=y/6=z/7=k

suy ra    x-y+z/x+2-z  =  2k-5k+7k/2k10+7k = k(2-5+70/k(2+10-70 = 4/5

vậy A=4/5

5 tháng 11 2016

Đặt: \(\frac{x}{2}\)+\(\frac{y}{5}\)+\(\frac{z}{7}\)=k

=>x=2k; y=5k; z=7k

Theo bài ra ta có:

A=\(\frac{x-y+z}{x-2y-z}\)=\(\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}\)=\(\frac{4k}{5k}\)=\(\frac{4}{5}\)

=>A=\(\frac{4}{5}\)

5 tháng 11 2016

theo bài ra ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}=\frac{x-y+z}{2-5+7}=\frac{x+2y-z}{2+10-7}=\frac{x-y+z}{4}=\frac{x+2y-z}{5}\)

=>\(\frac{x-y+z}{4}=\frac{x+2y-z}{5}\)

theo tính chất tỉ lệ thức ta có;

\(\frac{x-y+z}{4}=\frac{x+2y-z}{5}\Rightarrow\frac{4}{5}=\frac{x-y+z}{x+2y-z}\)

vậy A = \(\frac{4}{5}\)

13 tháng 11 2016

Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)

\(\Rightarrow x=2k,y=5k,z=7k\)

Ta có: \(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{k\left(2-5+7\right)}{2k+10k-7k}=\frac{k4}{\left(2+10-7\right)k}=\frac{4}{5}\)

Vậy \(A=\frac{4}{5}\)

27 tháng 10 2021

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=5k\\z=7k\end{matrix}\right.\)

\(A=\dfrac{x-y+z}{x+2y-z}=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{4}{5}\)

27 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{x-y+z}{4}=\dfrac{x+2y-z}{5}\Leftrightarrow A=\dfrac{4}{5}\)

10 tháng 11 2016

em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122

17 tháng 11 2016

Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)

\(\Rightarrow x=2k,y=5k,z=7k\)

Ta có: \(A=\frac{x-y+z}{x+2y-z}\)

\(\Rightarrow A=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{k\left(2-5+7\right)}{2k+10k-7k}=\frac{4k}{\left(2+10-7\right)k}=\frac{4}{5}\)

Vậy \(A=\frac{4}{5}\)