K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

Áp dụng hằng đẳng thức \(\left(a-b\right).\left(a+b\right)=a^2-b^2\) vào ta được:

\(\left(5x-3y+8z\right).\left(5x-3y-8z\right)=\left(5x-3y\right)^2-\left(8z\right)^2\)

\(=25x^2-30xy+9y^2-64z^2.\)

Ta dùng tính chất:

\(x^2=y^2+4z^2\Rightarrow x^2-y^2=4z^2.\)

\(\Leftrightarrow25x^2-30xy+9y^2-16.4z^2\)

\(=25x^2-30xy+9y^2-16.\left(x^2-y^2\right)\)

\(=25x^2+9y^2-30xy-16x^2+16y^2\)

\(=9x^2-30xy+25y^2\)

\(=\left(3x-5y\right)^2.\)

Ta có: \(\left(3x-5y\right)^2+1\ge0\) \(\forall x,y.\)

\(\Rightarrow\left(3x-5y\right)^2\) luôn dương.

\(\Rightarrow\left(5x-3y+8z\right).\left(5x-3y-8z\right)+1\) luông dương \(\forall x,y\left(đpcm\right).\)

Chúc bạn học tốt!

NV
22 tháng 9 2019

\(x^2=y^2+4z^2\Rightarrow x^2-y^2=4z^2\)

\(A=\left(5x-3y+8x\right)\left(5x-3y-8z\right)+1\)

\(=\left(5x-3y\right)^2-64z^2+1\)

\(=\left(5x-3y\right)^2-16\left(x^2-y^2\right)+1\)

\(=25x^2+9y^2-30xy-16x^2+16y^2+1\)

\(=9x^2-30xy+25y^2+1\)

\(=\left(3x-5y\right)^2+1>0\) \(\forall x;y\)

22 tháng 9 2019

Giúp mk đi các bạn ơi

Mk nhớ ơn suốt đời

3 tháng 1 2020

Ta có

\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)

\(=25x^2-30xy+9y^2-16z^2\left(!\right)\)

Thay \(x^2=y^2+z^2\) vào ! thì

\(25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)

\(=\left(3x-5y\right)^2\)

5 tháng 7 2017

Ta có \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)

\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)

\(\Leftrightarrow25x^2-30xy+9y^2-16z^2=9x^2-30xy+25y^2\)

\(\Leftrightarrow16x^2=16y^2+16z^2\Leftrightarrow x^2=y^2+z^2\)

5 tháng 7 2017

(5x - 3y + 4z) . (5x - 3y - 4z) = (3x - 5y)2

(5x - 3y)2 - 16z2 = (3x - 5y)2

25x2 - 2.5x.3y + 9y2 - 16z2 = 9x2 - 2.3x.5y + 25y2

16x2 + 9y2 - 16z2 - 25y2 = 0

16x2 - 16y2 - 16z2 = 0

x2 - y2 - z2 = 0

x2 = y2 + z2

24 tháng 9 2015

Bài 3 :

\(x=3y=2z\)

\(\Rightarrow x=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{2}}\)

\(\Rightarrow\frac{2x}{2}=\frac{3y}{1}=\frac{4z}{2}=\frac{2x-3y+4z}{2-1+2}=\frac{k}{3}\)

\(\Rightarrow x=\frac{k}{3}\)

     \(y=\frac{k}{3}.\frac{1}{3}=\frac{k}{9}\)

     \(z=\frac{k}{3}.\frac{1}{2}=\frac{k}{6}\)

4 tháng 7 2017

\(5x=y\); \(3y=5z\)

\(\Rightarrow\) \(\dfrac{x}{1}=\dfrac{y}{5}\); \(\dfrac{y}{5}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x}{1}=\dfrac{y}{5}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{10x}{10}=\dfrac{7y}{35}=\dfrac{8z}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{10x}{10}=\dfrac{7y}{35}=\dfrac{8z}{24}=\dfrac{10x-7y-8z}{10-35-24}=\dfrac{-0,5}{-49}\)

5 tháng 7 2017

Đề bài có vẻ hơi sai sai bạn ạ

20 tháng 12 2021

a: \(\Leftrightarrow-15x+10=-7x+14\)

=>-8x=4

hay x=-1/2

20 tháng 12 2021

\(a,\dfrac{2-3x}{x-2}=-\dfrac{7}{5}\left(x\ne2\right)\\ \Leftrightarrow14-7x=10-15x\\ \Leftrightarrow8x=-4\Leftrightarrow x=-2\left(tm\right)\\ c,\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{5}=\dfrac{z-3}{4}=\dfrac{2x-2+3y-6-z+3}{2\cdot2+5\cdot3-4}=\dfrac{45}{15}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=6\\y-2=15\\z-3=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=17\\z=15\end{matrix}\right.\\ d,\Leftrightarrow\dfrac{x}{1}=\dfrac{y}{3};\dfrac{y}{4}=\dfrac{z}{5}\\ \Leftrightarrow\dfrac{x}{4}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{6x+7y+8z}{24+84+120}=\dfrac{456}{228}=2\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=24\\z=30\end{matrix}\right.\)

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{x}{\dfrac{-5}{4}}=\dfrac{y}{\dfrac{7}{6}}=\dfrac{z}{-\dfrac{8}{3}}=\dfrac{x+3y-2z}{-\dfrac{5}{4}+\dfrac{7}{2}+\dfrac{16}{3}}=\dfrac{-273}{\dfrac{91}{12}}=-36\)

Do đó: x=45; y=-42; z=96