Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x_2\)là nghiệm của phương trình
=> \(x_2^2-5x_2+3=0\)
=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)
Khi đó
\(A=||x_1-2|-|x_2-2||\)
=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)
=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)
Mà A>0(đề bài)
=> A=1
Vậy A=1
\(mx^2+2\left(m-1\right)x+\left(m-3\right)=0\left(1\right)\)
\(+TH_1:a=0\Leftrightarrow m=0\)
Thế \(m=0\) vào \(\left(1\right)\) \(\Rightarrow2.\left(-1\right)x-3=0\Rightarrow-2x-3=0\Rightarrow x=-\dfrac{3}{2}\left(ktm\right)\)
\(+TH_1:a\ne0\Leftrightarrow m\ne0\)
Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2m+2}{m}\\x_1x_2=\dfrac{c}{a}=\dfrac{m-3}{m}\end{matrix}\right.\)
\(x_1< 1< x_1\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\\left(x_1-1\right)\left(x_2-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[2\left(m-1\right)\right]^2-4m\left(m-3\right)>0\\x_1x_2-x_1-x_2+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4\left(m^2-2m+1\right)-4m^2+12m>0\\x_1x_2-\left(x_1+x_2\right)+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m^2+8m+4-4m^2+12m>0\\\dfrac{m-3}{m}-\left(\dfrac{-2m+2}{m}\right)+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20m+4>0\\\dfrac{m-3}{m}+\dfrac{2m-2}{m}+1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{5}\\m-3+2m-2+m< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{5}\\4m-5< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{5}\\m< \dfrac{5}{4}\end{matrix}\right.\)
\(KL:m\in\left(-\dfrac{1}{5};\dfrac{5}{4}\right)\)
theo vi-ec ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=2\\P=x_1.x_2=\dfrac{c}{a}=-15\end{matrix}\right.\)
\(Q=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1.x_2}=\sqrt{2^2-4.\left(-15\right)}=8\)
Ta có \(\Delta=1-4m\left(m-1\right)>0\)
=> \(-4m^2+4m+1>0\)<=> \(\frac{1-\sqrt{2}}{2}< x< \frac{1+\sqrt{2}}{2}\)
Theo Vi-et ta có
\(\hept{\begin{cases}x_1+x_2=\frac{-1}{m}\\x_1x_2=\frac{m-1}{m}\end{cases}}\)
Ta có \(|\frac{1}{x_1}-\frac{1}{x_2}|>1\)x1,x2 khác 0
<=> \(\frac{1}{x_1^2}+\frac{1}{x_2^2}-\frac{2}{x_1x_2}>1\)
<=> \(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x^2_1x_2^2}-\frac{2}{x_1x_2}>1\)
<=>\(\left(x_1+x_2\right)^2-4x_1x_2>x^2_1x_{ }_2^2\)
<=> \(\frac{1}{m^2}-\frac{4\left(m-1\right)}{m}>\left(\frac{m-1}{m}\right)^2\)
<=> \(1-4m\left(m-1\right)>\left(m-1\right)^2\)
<=> \(5m^2-6m< 0\)
<=> \(0< m< \frac{6}{5}\)
Kết hợp ta được
\(0< m< \frac{6}{5}\)và \(m\ne1\)do \(x_1,x_2\ne0\)
\(\Delta'=1+m>0\Rightarrow m>-1\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-m\end{matrix}\right.\)
\(x_1< x_2< 2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m>0\\2< 4\end{matrix}\right.\) \(\Rightarrow m< 0\)
Vậy \(-1< m< 0\)
1/ \(x^2-2\left(m-1\right)x+m^2-3m=0\)
\(\Delta'>0\Leftrightarrow m^2-2m+1-m^2+3m>0\Leftrightarrow m>-1\)
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
\(x^2_1+x^2_2\le8\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le8\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-3m\right)\le8\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m\le8\)
\(\Leftrightarrow2m^2-2m-4\le0\Leftrightarrow-1\le m\le2\)
\(\Rightarrow-1< m\le2\)
Câu 1b, 2, 3 làm tương tự
Câu 4:
\(bpt>0,\forall m\Leftrightarrow\left\{{}\begin{matrix}m+1>0\\\Delta'< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\4m^2-\left(m+1\right)\left(-3m-5\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow7m^2+8m+5< 0\left(lđ,\forall m\right)\)
\(\Rightarrow m>-1\)