Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P=\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}=\frac{\left(a+b\right)^2}{1}=\left(a+b\right)^2\)
Dấu "=" xảy ra khi \(\Leftrightarrow\hept{\begin{cases}\frac{a}{x}=\frac{b}{y}\\x+y=1\end{cases}}\Leftrightarrow...\) (tự tìm nha! Mình đang bận)
Vậy...
tại sao
\(\frac{a^2}{x^2}\)+\(\frac{b^2}{y^2}\)\(\ge\)\(\frac{\left(a+b\right)^2}{x+y}\)
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Đặt:
\(\frac{x}{2}=\frac{y}{4}=k\)
\(\Rightarrow\frac{x}{2}=k\Rightarrow x=k.2\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=k.4\)
Thế vào \(x^4.y^4=16\), ta có;
\(\left(k.2\right).\left(k.4\right)=16\)
\(k^2.8=16\)
\(k^2=2\)
\(k=...\)
Đề sai ko
a) \(\left(x-1\right)\left(x-2\right)>0\)
=> \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>1\\x>2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)
=> \(1< x< 2\)
b) 2x - 3 < 0
=> 2x < 3
=> x < 3/2
c) \(\left(2x-4\right)\left(9-3x\right)>0\)
=> 2(x - 2). 3(3 - x) > 0
=> (x - 2)(3 - x) > 0
=> \(\hept{\begin{cases}x-2>0\\3-x>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\3-x< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>3\end{cases}}\)
=> 2 < x < 3
\(\left|x\right|=\frac{4}{7}\)
\(\Rightarrow x=\frac{4}{7}\)
b,\(\left(2x-3\right)^2=64\)
\(\Leftrightarrow\left(2x-3\right)^2=\left(\pm8\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=8\\2x-3=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=-\frac{5}{2}\end{cases}}}\)
c,\(\left(\frac{1}{2}\right)^x=\frac{1}{16}\)
\(\Rightarrow\left(\frac{1}{2}\right)^x=\left(\pm\frac{1}{2}\right)^4\)
\(\Rightarrow x=\pm\frac{1}{2}\)
d,\(3^{x+1}=27\)
\(\Leftrightarrow3^{x+1}=3^3\)
\(\Leftrightarrow x+1=3\)
\(\Leftrightarrow x=2\)
1)Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
\(A>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)(có 100 phân số)
\(A>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)
\(A>\frac{100}{10}=10\left(đpcm\right)\)
2)\(A=\frac{\sqrt{x}-2010}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2011}{\sqrt{x+1}}=1-\frac{2011}{\sqrt{x}+1}\)
Để A đạt giá trị nhỏ nhất thì
\(1-\frac{2011}{\sqrt{x}+1}\) đạt GTNN
\(\Leftrightarrow\frac{2011}{\sqrt{x}+1}\) đạt GTLN
\(\Leftrightarrow\sqrt{x}+1\) đạt GTNN
\(\Leftrightarrow\sqrt{x}\) đạt GTNN
\(\Leftrightarrow x=0\)
\(\Rightarrow MIN_A=\frac{-2010}{1}=-2010\)