Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(x2+2xy+y2)+(y2-4yz+4z2)+(y2-2y+1)+(z2-2z+1)-4x-2y-4z+5
=(x+y)2-4(x+y)+4 +(y-2z)2+2(y-2z)+1 +(y-1)2+(z-1)2
=(x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\ge0\)\(\forall_{x,y,z}\)
Lai co (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\le\)0
=> (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2=0
Dau = xay ra khi x=y=z=1
a/ a2 + b2 + c2 \(\ge\)ab + bc + ca
<=> 2(a2 + b2 + c2) \(\ge\)2(ab + bc + ca)
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2 \(\ge0\)
<=> (a - b)2 + (b - c)2 + (c - a)2 \(\ge0\) (đúng)
=> ĐPCM
b/ a2 + b2 + c2 \(\ge\) 2ab - 2ac + 2bc
<=> a2 + b2 + c2 + 2( - ab + ac - bc)\(\ge\) 0
<=> (a - b + c)2 \(\ge0\)(đúng)
=> ĐPCM
Giả thiết đề bài phải cho \(x^2+y^2+z^2\le3\) mới đúng.
Đặt \(m=x+y+z\) thì \(m^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\le3+2\left(xy+yz+zx\right)\)
\(\le3+2\left(x^2+y^2+z^2\right)\le3+3.2=9\)
\(\Rightarrow m^2\le9\Rightarrow-3\le m\le3\) (1)
Lại có ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow xy+yz+zx\le\frac{m^2}{3}\le\frac{9}{3}=3\) (2)
Từ (1) và (2) suy ra \(x+y+z+xy+yz+zx\le6\) (đpcm)
f(x,y,z) =\(\left(x^2+9z^2-6xz\right)+\left(y^2+4z^2-4yz\right)+\left(x^2-6x+9\right)\)
\(f\left(x,y,z\right)=\left(x-3z\right)^2+\left(y-2z\right)^2+\left(x-3\right)^2\)
\(f\left(x,y,z\right)\ge0\forall x,y,z\in R\)
\(f\left(x,y,z\right)=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\x-3z=0\\y-2z=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=3z\\y=2z\end{matrix}\right.\\xy=6z^2\\x^2=9z^2\\y^2=4z^2\end{matrix}\right.\)
\(A=\dfrac{2xy+xz-x^2-2y^2-yz}{x^2-y^2}=\dfrac{12z^2+3z^2-9z^2-8z^2-2z^2}{9z^2-4z^2}=\dfrac{-4z^2}{5z^2}=-\dfrac{4}{5}\)
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) ( 1 )
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\) ( 2 )
\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 )
( Dấu " = " xảy ra khi x = y )
Chúc bạn học tốt !!!