Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x-y-z=0\Rightarrow\left[{}\begin{matrix}x-z=y\\y-x=-z\\z+y=x\end{matrix}\right.\) (1)
Thay (1) vào B ta đc:
\(B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(=\left(\dfrac{x-z}{x}\right)\left(\dfrac{y-x}{y}\right)\left(\dfrac{z+y}{z}\right)\)
\(=\dfrac{y}{x}.\dfrac{-z}{y}.\dfrac{x}{z}\)
\(=-1\)
Vậy \(B=-1.\)
x-y-z=0
\(\Rightarrow x=y+z\)
\(\Rightarrow y=x-z\)
\(\Rightarrow-z=y-z\)
\(B=\left(1-\dfrac{z}{x}\right).\left(1-\dfrac{y}{x}\right).\left(1+\dfrac{y}{z}\right)\)
\(B=\left(\dfrac{x-z}{x}\right).\left(\dfrac{y-x}{y}\right).\left(\dfrac{z+y}{z}\right)\)
\(B=(\dfrac{y}{x}).\left(\dfrac{-z}{y}\right).\left(\dfrac{x}{z}\right)\)
\(B=\dfrac{\left(y.x.-z\right)}{\left(y.x.z\right)}\Rightarrow B=-1\)
Vào đây:
Câu hỏi của Phạm Đức Minh - Toán lớp 7 | Học trực tuyến
Ta có : từ x - y - z =0
\(\Rightarrow x-z=y\) ; \(-z=y-x\) ; \(y+z=x\)
Lại có \(B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(\Rightarrow B=\dfrac{x-z}{x}.\dfrac{y-x}{y}.\dfrac{y+z}{z}\)
thay các hằng đẳng thức vừa tìm được vào B
\(\Rightarrow B=\dfrac{y}{x}.\dfrac{-z}{y}.\dfrac{x}{z}=-1\)
vậy B = -1
tik mik nha !!!