Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt \(A=\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\) . Ta sẽ phân tích A thành nhân tử:
\(A=\left(x-y+y-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)+ \(\left(z-x\right)^5\)
\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4\right]\)+ \(\left(z-x\right)^5\)
\(A=\left(x-z\right)\left[\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3+\left(y-z\right)^4-\left(z-x\right)^4\right]\)
\(A=\left(x-z\right).B\)
Ta phân tích \(\left(y-z\right)^4-\left(z-x\right)^4=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x+y-2z\right)\left(y-x\right)\)
và \(\left(x-y\right)^4-\left(x-y\right)^3\left(y-z\right)+...-\left(x-y\right)\left(y-z\right)^3\)
\(=\left(x-y\right)\left[\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\right]\)
Đặt \(C=\left(x-y\right)^3-\left(x-y\right)^2\left(y-z\right)+\left(x-y\right)\left(y-z\right)^2-\left(y-z\right)^3\)
\(D=\left[\left(y-z\right)^2+\left(z-x\right)^2\right]\left(x-z+y-z\right)\)
\(=\left(x-z\right)\left(y-z\right)^2+\left(y-z\right)^3-\left(z-x\right)^3+\left(y-z\right)\left(z-x\right)^2\)
\(C-D=\left(y-z\right)\left[-\left(x-y\right)^2-3\left(y-z\right)^2-\left(z-x\right)^2-\left(x-y\right)^2+\left(x-y\right)\left(z-x\right)-\left(z-x\right)^2\right]\)
\(=\left(y-z\right)\left[5\left(-x^2+xy-y^2-z^2+yz+zx\right)\right]\)
Vậy \(A=5\left(x-y\right)\left(y-z\right)\left(z-x\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Vậy \(A=\left(x-z\right)\left(x-y\right)\left(y-z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
nên chia hết cho \(5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
Đặt \(x-y=a;y-z=b;\Rightarrow z-x=-b-a\)
\(\Rightarrow\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5=a^5+b^5+\left(-a-b\right)^5\)
\(=\left(a^5+b^5\right)+\left(-a^5-5a^4b-10a^3b^2-10a^2b^3-5ab^4-b^5\right)\)
\(=-5a^4b-10a^3b^2-10a^2b^3-5ab^4\)
\(=-5ab\left(a^3+2a^2b+2ab^2+b^3\right)\)
\(=-5ab\left[\left(a+b\right)\left(a^2-ab+b^2\right)+2ab\left(a+b\right)\right]\)
\(=-5ab\left(a+b\right)\left(a^2+ab+b^2+a+b\right)⋮-5ab\left(-a-b\right)\)
Hay \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5⋮5\left(x-y\right)\left(y-z\right)\left(z-x\right)\)(đpcm)
\(x^5-x=x\left(x^4-1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4+5\right)=x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)+5x\left(x-1\right)\left(x+1\right)=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)
Do \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 5, một số chia hết cho 2 và một số chia hết cho 3\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2.3.5=30\)
Mặt khác: \(x\left(x-1\right)\left(x+1\right)\) là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow x\left(x-1\right)\left(x+1\right)⋮6\)\(\Rightarrow5x\left(x-1\right)\left(x+1\right)⋮5.6=30\)
\(\Rightarrow x^5-x=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)⋮30\)
CMTT \(\Rightarrow\left\{{}\begin{matrix}y^5-y⋮30\\z^5-z⋮30\end{matrix}\right.\)
\(\Rightarrow\left(x^5+y^5+z^5\right)-\left(x+y+z\right)⋮30\)
Mà \(x+y+z=2010⋮30\)
\(\Rightarrow x^5+y^5+z^5⋮30\)
1. Rút gọn biểu thức:
(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)
= (x - y + z)2 + 2(x - y + z)(y - z) + (y - z)2
= (x - y + z + y - z)2
= x2
2. Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1
Giải
Đặt a = 5q + 4 (q \(\in\) N), ta có:
a2 = (5q + 4)2 = 25q2 + 40q + 16 = (25q2 + 40q + 15) + 1 chia cho 5 dư 1.
Xét hiệu \(\left(x^5+y^5+z^5\right)-\left(x+y+z\right)=\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)\)
Ta có: \(\hept{\begin{cases}x^5-x⋮30\\y^5-y⋮30\\z^5-z⋮30\end{cases}}\) (tự chứng minh)
=>\(\left(x^5-x\right)+\left(y^5-y\right)+\left(z^5-z\right)⋮30\)
Mặt khác \(x+y+z⋮30\)
=>\(x^5+y^5+z^5⋮30\) (đpcm)
x^3+y^3 = 2.(z^3+t^3)
<=> x^3+y^3+z^3+t^3 = 3.(z^2+t^3) chia hết cho 3
Xét : x^3-x = x.(x^2-1) = (x-1).x.(x+1) chia hết cho 3 ( vì là tích 3 số nguyên liên tiếp )
Tương tự : y^3-y , z^3-z và t^3-t đều chia hết cho 3
=> (x^3+y^3+z^3+t^3)-(x+y+z+t) chia hết cho 3
Mà x^3+y^3+z^3+t^3 chia hết cho 3
=> x+y+z+t chia hết cho 3
Tk mk nha