K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\dfrac{y\left(x+1\right)}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{z\left(y+1\right)}{2};\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{x\left(z+1\right)}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(Q\ge\left(x+y+z+3\right)-\dfrac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)

\(=6-\dfrac{xy+yz+xz+x+y+z}{2}\)

\(\ge6-\dfrac{\dfrac{\left(x+y+z\right)^2}{3}+3}{2}=6-3=3\)

Đẳng thức xảy ra khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:

Sửa: $x^2\geq y^2+z^2$
Áp dụng BĐT Cauchy-Schwarz:

$P\geq \frac{y^2+z^2}{x^2}+\frac{7x^2}{2}.\frac{4}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{14x^2}{y^2+z^2}+2007$

$=\frac{y^2+z^2}{x^2}+\frac{x^2}{y^2+z^2}+\frac{13x^2}{y^2+z^2}+2007$

$\geq 2+\frac{13x^2}{y^2+z^2}+2007$ (áp dụng BĐT Cô-si)

$\geq 2+13+2007=2022$ (do $x^2\geq y^2+z^2$)

Vậy $P_{\min}=2022$

 

13 tháng 4 2023

 Áp dụng BĐT Cauchy cho 3 số thực dương \(xy,yz,zx\), ta có \(xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\). Do \(xy+yz+zx=3xyz\) nên\(3xyz\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow3\sqrt[3]{\left(xyz\right)^2}\left(\sqrt[3]{xyz}-1\right)\ge0\) \(\Leftrightarrow\sqrt[3]{xyz}\ge1\) \(\Leftrightarrow xyz\ge1\)

ĐTXR \(\Leftrightarrow\left\{{}\begin{matrix}xy=yz=zx\\xy+yz+zx=3xyz\end{matrix}\right.\) \(\Leftrightarrow x=y=z=1\)

Ta có \(\dfrac{x}{1+y^2}=\dfrac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\dfrac{xy^2}{1+y^2}\ge x-\dfrac{xy^2}{2y}\)\(=x-\dfrac{xy}{2}\)

Tương tự, ta có \(\dfrac{y}{1+z^2}\ge y-\dfrac{yz}{2}\) và \(\dfrac{z}{1+x^2}\ge z-\dfrac{zx}{2}\). Từ đó suy ra \(\dfrac{x}{1+y^2}+\dfrac{y}{1+z^2}+\dfrac{z}{1+x^2}\ge x+y+z-\dfrac{xy+yz+zx}{2}\) \(=x+y+z-\dfrac{3}{2}xyz\) . Từ đây suy ra \(Q\ge x+y+z\ge\sqrt[3]{xyz}\ge1\). ĐTXR \(\Leftrightarrow x=y=z=1\)

Vậy GTNN của \(Q\) là \(1\) đạt được khi \(x=y=z=1\)

14 tháng 4 2023

 Dạ thưa thầy, chỗ kia con sửa là \(Q\ge x+y+z\ge3\sqrt[3]{xyz}\ge3\) ạ. GTNN của Q là 3 khi \(x=y=z=1\)

8 tháng 6 2023

\(\dfrac{1}{x}+\dfrac{2}{y}\le1\Rightarrow\dfrac{2}{y}\le1-\dfrac{1}{x}\Rightarrow y\ge\dfrac{2x}{x-1}=2+\dfrac{2}{x-1}\)

\(x+\dfrac{2}{z}\le3\Rightarrow x< 3;\dfrac{2}{z}\le3-x\Rightarrow z\ge\dfrac{2}{3-x}\Rightarrow y+z\ge2+\dfrac{2}{x-1}+\dfrac{2}{3-x}\)

Lúc này ta sẽ áp dụng bất đẳng thức Bunhiacopski

Ta có:

\(6^2\le\left(y+z\right)^2=\left(\sqrt{2}\dfrac{y}{\sqrt{2}}Z\right)^2\le3\left(\dfrac{y^2}{2}+z^2\right)=\dfrac{3}{2}\left(y^2+2z^2\right)\)

\(\Rightarrow P\ge24\). Dấu đẳng thức xảy ra khi và chỉ khi \(y=4,z=2\) 

Vậy giá trị nhỏ nhật của P là 24

NV
7 tháng 8 2021

\(T\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+x+y+z}=\dfrac{x+y+z}{2}\ge\dfrac{2019}{2}\)

áp dụng BĐT:\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\) với a,b,c,x,y,z là số dương

ta có BĐT Bunhiacopxki cho 3 bộ số:\(\left(\dfrac{a}{\sqrt{x}};\sqrt{x}\right);\left(\dfrac{b}{\sqrt{y}};\sqrt{y}\right);\left(\dfrac{c}{\sqrt{z}};\sqrt{z}\right)\)

ta có :

\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\left(x+y+z\right)\)\(=\left[\left(\dfrac{a}{\sqrt{x}}\right)^2+\left(\dfrac{b}{\sqrt{y}}\right)^2+\left(\dfrac{c}{\sqrt{z}}\right)^2\right]\).\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\)\(\ge\left(\dfrac{a}{\sqrt{x}}.\sqrt{x}+\dfrac{b}{\sqrt{y}}.\sqrt{y}+\dfrac{c}{\sqrt{z}}.\sqrt{z}\right)^2=\left(a+b+c\right)^2\)

lúc đó ta có :\(\dfrac{a^2}{x}+\dfrac{b^2}{y}+\dfrac{c^2}{z}\ge\dfrac{\left(a+b+c\right)^2}{x+y+z}\)

ta có \(T=\dfrac{x^2}{x+\sqrt{yz}}+\dfrac{y^2}{y+\sqrt{zx}}+\dfrac{z^2}{z+\sqrt{xy}}\)\(\ge\dfrac{\left(x+y+z\right)^2}{x+\sqrt{yz}+y+\sqrt{zx}+z+\sqrt{xy}}\) mà ta có :

\(\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\)\(\le\dfrac{x+y}{2}+\dfrac{x+z}{2}+\dfrac{z+y}{2}\)\(\Rightarrow\sqrt{yz}+\sqrt{zx}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow T=\dfrac{2019}{2}\Leftrightarrow x=y=z=673\)

vậy \(\text{MinT}=\dfrac{2019}{2}\) khi và chỉ khi x=y=z=673

13 tháng 10 2023

\(P=\dfrac{1}{2023}\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{2023.z}\dfrac{x+y}{xy}\)

Ap dung BDT cosi taco 

\(P\ge\dfrac{1}{2023z}.\dfrac{x+y}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{4}{2023z}\dfrac{1}{x+y}\)

<->\(P\ge\dfrac{4}{2023}\dfrac{1}{z\left(1-z\right)}=\dfrac{4}{2023}\dfrac{1}{-z^2+z}=\dfrac{4}{2023}\dfrac{1}{-\left(z-\dfrac{1}{2}\right)^2+\dfrac{1}{4}}\)

\(< =>P\ge\dfrac{4}{2023}\dfrac{1}{\dfrac{1}{4}}=\dfrac{16}{2023}\)

\(P_{min}=\dfrac{16}{2023}\Leftrightarrow Z=\dfrac{1}{2},x=y=\dfrac{1}{4}\)

NV
14 tháng 2 2022

Hướng dẫn: đặt \(A=\dfrac{y^4}{\left(x^2+y^2\right)\left(x+y\right)}+\dfrac{z^4}{\left(y^2+z^2\right)\left(y+z\right)}+\dfrac{x^4}{\left(z^2+x^2\right)\left(z+x\right)}\)

Khi đó \(F-A=x-y+y-z+z-x=0\Rightarrow F=A\)

\(\Rightarrow2F=F+A=\sum\dfrac{x^4+y^4}{\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x^2+y^2\right)^2}{2\left(x^2+y^2\right)\left(x+y\right)}\ge\sum\dfrac{\left(x+y\right)^2\left(x^2+y^2\right)}{4\left(x^2+y^2\right)\left(x+y\right)}\)

\(\Rightarrow2F\ge\dfrac{x+y+z}{2}\Rightarrow F\ge\dfrac{x+y+z}{4}\)

NV
30 tháng 12 2021

\(P=\dfrac{1}{y}\left(\dfrac{1}{x}+\dfrac{1}{z}\right)\ge\dfrac{1}{y}.\dfrac{4}{x+z}=\dfrac{4}{y\left(x+z\right)}\ge\dfrac{4}{\dfrac{\left(y+x+z\right)^2}{4}}=4\)

\(P_{min}=4\) khi \(\left(x;y;z\right)=\left(\dfrac{1}{2};1;\dfrac{1}{2}\right)\)

31 tháng 12 2021

Anh ơi! Dấu bằng xảy ra là x+y+z =2 và cái nào nữa ạ anh