K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

Ta có : x+ y2 + z2 - yz  - 4x - 3y + 7

= [x- 4x + 4]+[\(\frac{1}{4}\)* y2 - yz + z2 ] + [ \(\frac{3}{4}\cdot(y^2-4y+4)]\)

= (x-2)^2 + (y/2 - z)^2 + 3/4.(y-2)^2 >= 0 

=> đpcm

Chúc bạn học tốt

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Đề lỗi công thức rồi. Bạn xem lại.

24 tháng 12 2020

nhờ mn giúp mk bài này vs ạ

mk đang cần gấp !

cảm ơn mn nhiều

NV
25 tháng 12 2020

Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)

\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)

Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)

Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)

\(\Rightarrow3\ge a^5+b^6+b^5\)

BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\) 

Ta có:

\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)

Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)

\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)

Từ (1);(2) \(\Rightarrow\) đpcm

27 tháng 5 2018

\(VT=6\left(x^2+y^2+z^2\right)+10\left(xy+yz+xz\right)+2\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(=6\left(x+y+z\right)^2-2\left(xy+yz+xz\right)+2\frac{9}{2x+y+z+x+2y+z+x+y+2z}\)

\(\ge6\left(x+y+z\right)^2-2\frac{\left(x+y+z\right)^2}{3}+2\frac{9}{4\left(x+y+z\right)}\)

\(=\: 6\cdot\left(\frac{3}{4}\right)^2-2\cdot\frac{\left(\frac{3}{4}\right)^2}{3}+2\cdot\frac{9}{4\cdot\frac{3}{4}}=9\)

AH
Akai Haruma
Giáo viên
17 tháng 7 2021

Lời giải:

$(x-y)^2\geq 0$ 

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 2\geq (x+y)^2$

$\Leftrightarrow \sqrt{2}\geq x+y\geq -\sqrt{2}$

Ta có đpcm.

17 tháng 7 2021

mình cảm ơn ạ