K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2020

Ta có : \(\frac{x+y+z-3t}{t}=\frac{y+z+t-3x}{x}=\frac{z+t+x-3y}{y}=\frac{t+x+y-3z}{z}\)

=> \(\frac{x+y+z-3t}{t}+4=\frac{y+z+t-3x}{x}+4=\frac{x+z+t-3y}{y}+4=\frac{x+y+t-3z}{z}+4\)

=> \(\frac{x+y+z+t}{t}=\frac{x+y+z+t}{x}=\frac{x+y+z+t}{y}=\frac{x+y+z+t}{z}\)

=> \(\frac{2012}{x}=\frac{2012}{y}=\frac{2012}{z}=\frac{2012}{t}=\frac{2012+2012+2012+2012}{x+y+z+t}=\frac{2012.4}{2012}=4\)

=> x = y = z = t = 403

Khi đó A = x + 2y - 3z + t

              = x + 2x - 3x + x

             = x = 403

Vậy x = 403 

4 tháng 7 2021

Ta có: \(\left|2x-3y\right|+\left|2y+3z\right|+\left|x+y+\frac{x}{z}\right|\ge0\left(\hept{\begin{cases}\forall x,y,z\\z\ne0\end{cases}}\right)\)

\(\Rightarrow\hept{\begin{cases}2x-3y=0\\2y+3z=0\\x+y+\frac{x}{z}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}y\\z=-\frac{2}{3}y\\\frac{3}{2}y-\frac{2}{3}y+\frac{\frac{3}{2}y}{-\frac{2}{3}y}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}y\\z=-\frac{2}{3}y\\\frac{5}{6}y=\frac{9}{4}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}y=\frac{81}{20}\\y=\frac{27}{10}\\z=\frac{-9}{5}\end{cases}}\)

12 tháng 2 2019

\(\frac{3x-2y}{2015}=\frac{2x-4x}{2016}=\frac{4y-3z}{2017}\)

\(\Rightarrow\frac{12x-8y}{8060}=\frac{6z-12x}{6048}=\frac{8y-6z}{4034}=\frac{\left(12x-8y\right)+\left(6z-12x\right)+\left(8y-6z\right)}{8060+6048+4034}=0\)

\(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\2z-4x=0\\4y-3z=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\2z=4x\\4y=3z\end{cases}}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{2}=\frac{z}{4}\\\frac{y}{3}=\frac{z}{4}\end{cases}}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\)

\(\Rightarrow x=2k;y=3k;z=4k\)

Thay vào P ta có

\(P=\frac{4k^2-2.2k.3k-16k^2}{4k^2+9k^2+16k^2}=\frac{k^2\left(4-12-16\right)}{k^2\left(4+9+16\right)}=-\frac{24}{29}\)

AH
Akai Haruma
Giáo viên
25 tháng 8 2024

Lời giải:

Vì $x,y,z$ tỉ lệ với $5,4,3$ nên:

$\frac{x}{5}=\frac{y}{4}=\frac{z}{3}$

Đặt $\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k; y=4k; z=3k$.

Khi đó:

$P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}$

$=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}$