Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM và BĐT Nesbitt ta có :
\(P=\frac{2x}{\sqrt{4\left(y+z-4\right)}}+\frac{2y}{\sqrt{4\left(x+z-4\right)}}+\frac{2z}{\sqrt{4\left(x+y-4\right)}}\)
\(\ge\frac{2x}{\frac{4+y+z-4}{2}}+\frac{2y}{\frac{4+x+z-4}{2}}+\frac{2z}{\frac{4+x+y-4}{2}}\)
\(=4\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\ge\frac{3}{2}\cdot4=6\)
Dấu "=" xảy ra khi \(x=y=z=4\)
\(M^2=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2xy}{\sqrt{yz}}+\frac{2yz}{\sqrt{zx}}+\frac{2xz}{\sqrt{yz}}=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}+\frac{2x\sqrt{y}}{\sqrt{z}}+\frac{2y\sqrt{z}}{\sqrt{x}}+\frac{2z\sqrt{x}}{\sqrt{y}}\)
Áp dụng bđt Cô-si: \(\frac{x^2}{y}+\frac{x\sqrt{y}}{\sqrt{z}}+\frac{x\sqrt{y}}{\sqrt{z}}+z\ge4\sqrt[4]{\frac{x^2}{y}.\frac{x\sqrt{y}}{\sqrt{z}}.\frac{x\sqrt{y}}{\sqrt{z}}.z}=4x\)
tương tự \(\frac{y^2}{z}+\frac{y\sqrt{z}}{\sqrt{x}}+\frac{y\sqrt{z}}{\sqrt{x}}+x\ge4y\);\(\frac{z^2}{x}+\frac{z\sqrt{x}}{\sqrt{y}}+\frac{z\sqrt{x}}{\sqrt{y}}+y\ge4z\)
=>\(M^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow M^2\ge3\left(x+y+z\right)\ge3.12=36\Rightarrow M\ge6\)
Dấu "=" xảy ra khi x=y=z=4
Vậy minM=6 khi x=y=z=4
Ta có \(\frac{y}{x\sqrt{y^2+1}}=\frac{y\sqrt{xz}}{x\sqrt{y\left(x+y+z\right)+xz}}=\frac{yz}{\sqrt{x\left(y+z\right).z\left(x+y\right)}}\ge\frac{2yz}{2xz+xy+yz}\)
Đặt \(a=xy,b=yz,c=xz\)=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Khi đó
\(P\ge\frac{2b}{2c+a+b}+\frac{2c}{2a+b+c}+\frac{2a}{2b+a+c}\ge\frac{2\left(a+b+c\right)^2}{b^2+c^2+a^2+3\left(ab+bc+ac\right)}\)
Xét \(P\ge\frac{3}{2}\)
=> \(4\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)+9\left(ab+bc+ac\right)\)
<=> \(a^2+b^2+c^2\ge\left(ab+bc+ac\right)\)(luôn đúng )
Vậy \(MinP=\frac{3}{2}\)khi a=b=c=3=> \(x=y=z=\sqrt{3}\)
2. Xem tại đây
1. \(P=\frac{1}{\sqrt{x.1}}+\frac{1}{\sqrt{y.1}}+\frac{1}{\sqrt{z.1}}\)
\(\ge\frac{1}{\frac{x+1}{2}}+\frac{1}{\frac{y+1}{2}}+\frac{1}{\frac{z+1}{2}}\)
\(=\frac{2}{x+1}+\frac{2}{y+1}+\frac{2}{z+1}\ge\frac{2.\left(1+1+1\right)^2}{x+y+z+3}=\frac{18}{3+3}=3\)
Đẳng thức xảy ra \(\Leftrightarrow x=y=z=1\)
1 ) có cách theo cosi đó
áp dụng cosi cho 3 số dương ta có \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x}}+x\ge3\sqrt[3]{\frac{1}{\sqrt{x}}\times\frac{1}{\sqrt{x}}\times x}=3\sqrt[3]{1}=3\)(1)
\(\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{y}}+y\ge3\)(2)
\(\frac{1}{\sqrt{z}}+\frac{1}{\sqrt{z}}+z\ge3\)(3)
cộng các vế của (1),(2),(3), đc \(2\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)+\left(x+y+z\right)\ge9\Rightarrow2P+3\ge9\Rightarrow P\ge3\)
minP=3 khi x=y=z=1
Đặt \(\sqrt{x^2+y^2}=c;\sqrt{y^2+z^2}=a;\sqrt{z^2+x^2}=b\)
Ta có:
\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
\(\ge\frac{x^2}{\sqrt{2\left(y^2+z^2\right)}}+\frac{y^2}{\sqrt{2\left(z^2+x^2\right)}}+\frac{z^2}{\sqrt{2\left(x^2+y^2\right)}}\)
\(=\frac{1}{2\sqrt{2}}\left(\frac{c^2+b^2-a^2}{a}+\frac{a^2+c^2-b^2}{b}+\frac{b^2+a^2-c^2}{c}\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(\frac{\left(2a+2b+2c\right)^2}{2\left(a+b+c\right)}-2018\right)=\frac{1009}{\sqrt{2}}\)
áp dụng bất đẳng thức Cauchy ngược dấu cho 2 số không âm ta có
\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\Rightarrow\frac{x}{\sqrt{x-1}}\ge2.\)
\(\sqrt{\left(\frac{y}{\sqrt{2}}-\sqrt{2}\right).\sqrt{2}}\le\frac{\frac{y}{\sqrt{2}}-\sqrt{2}+\sqrt{2}}{2}=\frac{y}{2\sqrt{2}}\Rightarrow\frac{y}{\sqrt{y-2}}\ge2\sqrt{2}.\)
\(\sqrt{\left(\frac{z}{\sqrt{3}}-\sqrt{3}\right).\sqrt{3}}\le\frac{\frac{z}{\sqrt{3}}-\sqrt{3}+\sqrt{3}}{2}=\frac{z}{2\sqrt{3}}\Rightarrow\frac{z}{\sqrt{z-3}}\ge2\sqrt{3}\)
\(\Rightarrow A\ge2+2\sqrt{2}+2\sqrt{3}\)
Vậy Min \(A=2+2\sqrt{2}+2\sqrt{3}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=1\\\frac{y}{\sqrt{2}}-\sqrt{2}=\sqrt{2}\\\frac{z}{\sqrt{3}}-\sqrt{3}=\sqrt{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}\left(tmđk\right)}\)
\(\frac{x}{\sqrt{y+z-4}}\)=\(=\frac{2x}{\sqrt{4\left(y+z-4\right)}}\ge\frac{2x}{\frac{y+z-4+4}{2}}=\frac{4x}{y+z}\)
vt \(\ge4\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=4\left(\frac{x^2}{xy+xz}+\frac{y^2}{xy+xz}+\frac{z^2}{xz+yz}\right)\ge4.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}=\frac{2.\left(x+y+z\right)^2}{xy+yz+xz}\)
\(\ge\frac{2\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}}=6\)
dau = xay ra khi x=y=z=4