Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:...
\(\Leftrightarrow\sqrt{x^2+11}-\sqrt{y^2+11}+\sqrt{x-2018}-\sqrt{y-2018}+x^2-y^2=0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left(x+y\right)}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\frac{x-y}{\sqrt{x-2018}+\sqrt{y-2018}}+\left(x-y\right)\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(\frac{x+y}{\sqrt{x^2+11}+\sqrt{y^2+11}}+\frac{1}{\sqrt{x-2018}+\sqrt{y-2018}}+x+y\right)=0\)
\(\Leftrightarrow x=y\) (ngoặc phía sau luôn dương)
Thay vào M chẳng được cái gì cả, \(M=x^{11}-x^{2018}\) :(
Chắc bạn nhầm đề
Cô chữa rồi =)) giải đến x = y rồi thay vào là được. x, y thuộc điều kiện xác định rồi thì M số bự chà bá luôn nên là tính dạng tổng quát thôi
P/s : làm bừa thôi!
\(\sqrt{x-2018}+\sqrt{x^2+11}+x^2=\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
\(\Leftrightarrow x=y\)
\(\Rightarrow M=x^{11}-x^{2018}\)
Đến đây em tịt !!
Ta có:
\(P=\frac{\sqrt{x+y}}{\sqrt{x-2018}+\sqrt{y-2018}}\)
\(\Leftrightarrow P^2=\frac{x+y}{x+y-4036+2\sqrt{\left(x-2018\right)\left(y-2018\right)}}\)
\(=\frac{x+y}{x+y-4036+2\sqrt{xy-2018x-2018y+2018^2}}\)
Mặt khác :
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2018}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{2018}\)
\(\Leftrightarrow2018x+2018y=xy\)
\(\Leftrightarrow xy-2018x-2018y=0\)(1)
Thế (1) vào P^2 ta có :
\(P^2=\frac{x+y}{x+y-4036+2\sqrt{2018^2}}=\frac{x+y}{x+y}=1\)
\(\Rightarrow P=.......\)
Cho x, y thỏa mãn: \(\left(x+\sqrt{2018+y^2}\right)\left(y+\sqrt{2018+x^2}\right)=2018\)
Tính x^3+y^3
1/x + 1/y = 1/2018
<=> 1/x = 1/2018 - 1/y = (y - 2018)/(2018y)
<=> x = 2018y/(y - 2018)
=> x + y = 2018y/(y - 2018) + y = y^2/(y - 2018)
=> x - 2018 = 2018y/(y - 2018) - 2018 = 2018^2/(y - 2018)
=> P = 1
PT đã cho
<=>\(\left(x+\sqrt{x^2+2008}\right)\left(x-\sqrt{x^2+2008}\right)\left(y+\sqrt{y^2+2008}\right)\)
=2008(\(x-\sqrt{x^2+2008}\))
<=>\(-2008\left(y+\sqrt{y^2+2008}\right)=2008\left(x-\sqrt{x^2+2008}\right)\)
<=>\(y+\sqrt{y^2+2008}=\sqrt{x^2+2008}-x\)
<=>\(y=\sqrt{x^2+2008}-\sqrt{y^2+2008}-x\) (1)
TT ta có PT đã cho <=>
\(\left(x+\sqrt{x^2+2008}\right)\left(y+\sqrt{y^2+2008}\right)\left(y-\sqrt{y^2+2008}\right)\)
=\(2008\left(y-\sqrt{y^2-2008}\right)\)
biến đổi như trên ta được
x=\(\sqrt{y^2+2008}-\sqrt{x^2+2008}-y\) (1)
Cộng vế với vế (1) và(2) ta được
x+y=-x-y
=>2(x+y)=0
=>x+y=0
*Có gì không hiểu thì hỏi nha