Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình đã trả lời bạn rồi đó!
http://olm.vn/hoi-dap/question/594638.html
đặt 2x+3=a
\(y\sqrt{y}+y=a\sqrt{a}+a\)
=>\(\left(\sqrt{y}-\sqrt{a}\right)\left(y+\sqrt{ay}+a+\sqrt{a}+\sqrt{y}\right)=0\)
=>\(\sqrt{y}=\sqrt{a}\Rightarrow y=2x+3\)
thay vào Q tìm min là xong
\(P=2x-3\sqrt{xy}+y=2x-3\sqrt{xy}+y+\left(-x-\sqrt{xy}+4y-4\sqrt{y}+16\right)\)
\(=x-4\sqrt{xy}+5y-4\sqrt{y}+16\)
\(=\left(\sqrt{x}-2\sqrt{y}\right)^2+\left(\sqrt{y}-2\right)^2+12\ge12\)
Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\sqrt{x}=2\sqrt{y}\\\sqrt{y}-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16\\y=4\end{cases}}\).
Với \(x=16,y=4\)thỏa mãn giả thiết.
Vậy \(minP=12\).
Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)
Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)
Theo đề bài có
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)
Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)
\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)
\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)
\(\Leftrightarrow-0,5\le2013-A\le0,5\)
\(\Leftrightarrow2012,5\le A\le2013,5\)
Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)
Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)
Áp dụng bất đẳng thức Cosi, ta có :
\(53=2x+3y\ge2\sqrt{2x.3y}=2\sqrt{6}.\sqrt{xy}\Rightarrow xy\le\left(\frac{53}{2\sqrt{6}}\right)^2\)
Do đó : \(P=\sqrt{xy+4}\le\sqrt{\left(\frac{53}{2\sqrt{6}}\right)^2+4}=\sqrt{\frac{2905}{24}}\)
Vậy : Max \(P=\sqrt{\frac{2905}{24}}\Leftrightarrow\left(x;y\right)=\left(\frac{53}{4};\frac{53}{6}\right)\)