K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Đáp án A

P = 1 3 x 3 + x 2 + y 2 − x + 1 = = 1 3 x 3 + x + y 2 − 2 x y − x + 1 = 1 3 x 3 + 4 − 2 x 2 − x − x + 1

⇒ P = 1 3 x 3 + 2 x 2 − 5 x + 5

xét hàm số   P x trên  0 ; 2  ta có 

P ' = x 2 + 4 x − 5 ⇒ P ' = 0 ⇔ x = 1

Ta tính các giá trị  P 0 = 5 ; P 1 = 7 3 ; P 2 = 17 3 ⇒ M i n P = 7 3

29 tháng 4 2018

Chọn C.

Phương pháp: 

Đưa biểu thức P về hàm số 1 ẩn x.

Khảo sát, tìm GTNN của hàm số đó.

Cách giải:

18 tháng 1 2018

1 tháng 1 2020

Ta có x + y = 2 ⇒ y = 2 - x ≥ 0 ⇒ 0 ≤ x ≤ 2 . Thay y = 2 - x và biểu thức P ta được

P = 1 3 x 3 + x 2 + 2 - x 2 - x + 1 = 1 3 x 3 + 2 x 2 - 5 x + 5 = f x

với  x ∈ 0 ; 2

Đạo hàm  f ' x = x 2 + 4 x - 5 = 0 ⇔ x = 1 x = - 5

Do x ∈ 0 ; 2  nên loại x = -5

f 1 = 7 3 ; f 0 = 5 ; f 2 = 17 3  

Vậy m i n x ∈ 0 ; 2 P = m i n x ∈ 0 ; 2 f x = 7 3  khi và chỉ khi x = 1

Đáp án B

23 tháng 10 2019

Đáp án D

19 tháng 3 2021

Toán lớp 0 ?????  \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)

19 tháng 5 2017

17 tháng 4 2017

Đáp án C.

Ta có:

G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.

Xét hàm số

f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên ℝ  suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1

⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1  

Ta có:  T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .

27 tháng 3 2019

Đáp án B.

Từ giả thiết, suy ra 5 x + 2 y + 1 3 x y - 1 + x + 1 = 5 x y - 1 + 1 3 x + 2 y + x y - 2 y  

⇔ 5 x + 2 y - 1 3 x + 2 y + x + 2 y = 5 x y - 1 - 1 3 x y - 1 + ( x y - 1 )  (1)

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm f ' ( t ) = 5 t . ln 5 + ln 3 3 t + 1 > 0 , ∀ t ∈ ℝ ⇒ hàm số f (t) luôn đồng biến trên  ℝ .

Suy ra  1 ⇔ f ( x + 2 y ) = f ( x y - 1 ) ⇔ x + 2 y = x y - 1 ⇔ x + 1 = y ( x - 2 )

y = x + 1 x - 2

Do y > 0  nên x + 1 x - 2 > 0 ⇔ x > 2 x < - 1  . Mà x > 0 nên x > 2.

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2  trên 2 ; + ∞ .

Đạo hàm g ' ( x ) = 1 - 3 x - 2 2 > 0 , g ' ( x ) = 0 ⇔ ( x - 2 ) 2 = 3  

⇔ x = 2 + 3   ( t m ) x = 2 - 3   ( L ) . Lập bảng biến thiên của hàm số trên 2 ; + ∞ , ta thấy m i n   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3  khi x = 2 + 3  và y = 1 + 3 .

30 tháng 6 2019

Đáp án C