Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)
\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)
\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)
\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)
\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)
t chỉ làm dc đến đây thôi :))
Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:
\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)
Tương tự : \(y^2z+y^2z+z^2x\ge3yz\); \(z^2x+z^2x+x^2y\ge3zx\)
Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)
\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)
Dấu '=' xảy ra khi x = y = z = 1
\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
a) Giả sử \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge\frac{1}{3}.3\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3\left(x^2-xy+y^2\right)\ge x^2+xy+y^2\)
\(\Leftrightarrow3x^2-3xy+3y^2-x^2-xy-y^2\ge0\)
\(\Leftrightarrow2x^2-4xy+2y^2\ge0\)
\(\Leftrightarrow2\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow2\left(x-y\right)^2\ge0\)(luôn đúng với mọi \(x,y\in R\)).
Dấu bằng xảy ra\(\Leftrightarrow x=y\).
Vậy \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\).
Đặt \(A=\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Và đặt \(B=\frac{y\sqrt{y}}{x+\sqrt{xy}+y}+\frac{z\sqrt{z}}{y+\sqrt{yz}+z}+\frac{x\sqrt{x}}{z+\sqrt{zx}+x}\left(x,y,z>0\right)\)
Đặt \(\sqrt{x}=m,\sqrt{y}=n,\sqrt{z}=p\left(m,n,p>0\right)\)thì theo đề bài : \(m+n+p=2\)
Lúc đó:
\(A=\frac{m^2.m}{m^2+mn+n^2}+\frac{n^2.n}{n^2+np+p^2}+\frac{p^2.p}{p^2+pm+m^2}\)
\(A=\frac{m^3}{m^2+mn+n^2}+\frac{n^3}{n^2+np+p^2}+\frac{p^3}{p^2+pm+m^2}\)
Và \(B=\frac{n^3}{m^2+mn+n^2}+\frac{p^3}{n^2+np+p^2}+\frac{m^3}{p^2+pm+m^2}\)
Xét hiệu \(A-B=\frac{m^3-n^3}{m^2+mn+n^2}+\frac{n^3-p^3}{n^2+np+p^2}+\frac{p^3-m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\frac{\left(m-n\right)\left(m^2+mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n-p\right)\left(n^2+np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p-m\right)\left(p^2+pm+m^2\right)}{p^2+pm+m^2}\)
\(\Leftrightarrow A-B=\left(m-n\right)+\left(n-p\right)+\left(p-m\right)\)
\(\Leftrightarrow A-B=m-n+n-p+p-m=0\)
\(\Leftrightarrow A=B\)
Xét \(A+B=\frac{m^3+n^3}{m^2+mn+n^2}+\frac{n^3+p^3}{n^2+np+p^2}+\frac{p^3+m^3}{p^2+pm+m^2}\)
\(\Leftrightarrow A+A=2A=\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+m+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\)
Theo câu a), ta có \(x^2-xy+y^2\ge\frac{1}{3}\left(x^2+xy+y^2\right)\)với \(x,y\in R\)
\(\Leftrightarrow\frac{x^2-xy+y^2}{x^2+xy+y^2}\ge\frac{1}{3}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow x=y\)
Áp dụng bất đẳng thức (1) (với \(m,n>0\)), ta được:
\(\frac{m^2-mn+n^2}{m^2+mn+n^2}\ge\frac{1}{3}\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}\ge\frac{m+n}{3}\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow m=n>0\)
Chứng minh tương tự, ta được:
\(\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\ge\frac{n+p}{3}\left(3\right)\)
Dấu bằng xảy ra\(\Leftrightarrow n=p>0\)
\(\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2+pm+m^2}\ge\frac{p+m}{2}\left(4\right)\)
Dấu bằng xảy ra\(\Leftrightarrow p=m>0\)
Từ \(\left(2\right),\left(3\right),\left(4\right)\), ta được:
\(\frac{\left(m+n\right)\left(m^2-mn+n^2\right)}{m^2+mn+n^2}+\frac{\left(n+p\right)\left(n^2-np+p^2\right)}{n^2+np+p^2}\)\(+\frac{\left(p+m\right)\left(p^2-pm+m^2\right)}{p^2-pm+m^2}\ge\frac{m+n}{3}+\frac{n+p}{3}+\frac{p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{m+n+n+p+p+m}{3}\)
\(\Leftrightarrow2A\ge\frac{2\left(m+n+p\right)}{3}\)
\(\Leftrightarrow A\ge\frac{m+n+p}{3}\)
\(\Leftrightarrow A\ge\frac{2}{3}\)(vì \(m+n+p=2\)) (điều phải chứng minh).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}m=n=p>0\\m+n+p=2\end{cases}}\Leftrightarrow m=n=p=\frac{2}{3}\)\(\Leftrightarrow\sqrt{x}=\sqrt{y}=\sqrt{z}=\frac{2}{3}\Leftrightarrow x=y=z=\frac{4}{9}\)
Vậy nếu \(x,y,z>0\) và \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)thì: \(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\ge\frac{2}{3}\).
Lời giải:
Áp dụng BĐT AM-GM:
$1=xy+yz+xz+2xyz\leq \frac{(x+y+z)^2}{3}+2.\frac{(x+y+z)^3}{27}$
$\Leftrightarrow 1\leq \frac{t^2}{3}+\frac{2t^3}{27}$ (đặt $x+y+z=t$)
$\Leftrightarrow 2t^3+9t^2-27\geq 0$
$\Leftrightarrow (t+3)^2(2t-3)\geq 0$
$\Leftrightarrow 2t-3\geq 0$
$\Leftrightarrow t\geq \frac{3}{2}$ hay $x+y+z\geq \frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $x=y=z=\frac{1}{2}$
Lời giải:
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 2\geq (x+y)^2$
$\Leftrightarrow \sqrt{2}\geq x+y\geq -\sqrt{2}$
Ta có đpcm.
Áp dụng BĐT Bunhiacopski:
Đặt \(A=x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\)
\(\Leftrightarrow A^2=\left[x\sqrt{16-y}+\sqrt{y\left(16-x^2\right)}\right]^2\le\left(x^2+16-x^2\right)\left(16-y+y\right)\\ \Leftrightarrow A^2\le16\cdot16=256\\ \Leftrightarrow A\le16\\ A_{max}=16\Leftrightarrow\dfrac{x^2}{16-x^2}=\dfrac{16-y}{y}\Leftrightarrow x^2y=256-16y-16x^2+x^2y\\ \Leftrightarrow16x^2+16y-256=0\\ \Leftrightarrow x^2+y-16=0\\ \Leftrightarrow x^2=16-y\Leftrightarrow x=\sqrt{16-y}\)
Áp dụng bđt AM-GM ta có
\(x^2-xy+y^2\ge x^2+y^2-\frac{x^2+y^2}{2}=\frac{x^2+y^2}{2}\)
\(\Rightarrow\frac{x+y}{x^2-xy+y^2}\le\frac{2\left(x+y\right)}{x^2+y^2}\le\frac{2\sqrt{2\left(x^2+y^2\right)}}{x^2+y^2}=\frac{2\sqrt{2}}{\sqrt{x^2+y^2}}\)
Dấu "=" xảy ra khi x=y=1
a/ Sửa đề:
\(\sqrt{22x^2+36xy+6y^2}+\sqrt{22y^2+36xy+6x^2}=x^2+y^2+32\)
\(\Leftrightarrow64x^2+64y^2+2048-64\sqrt{22x^2+36xy+6y^2}-64\sqrt{22y^2+36xy+6x^2}=0\)
\(\Leftrightarrow\left(22x^2+36xy+6y^2-64\sqrt{22x^2+36xy+6y^2}+1024\right)+\left(22y^2+36xy+6x^2-64\sqrt{22y^2+36xy+6x^2}+1024\right)+\left(36x^2-72xy+36y^2\right)=0\)
\(\Leftrightarrow\left(\sqrt{22x^2+36xy+y^2}-32\right)^2+\left(\sqrt{22y^2+36xy+6x^2}-32\right)^2+36\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{22x^2+36xy+6y^2}=32\\\sqrt{22y^2+36xy+6x^2}=32\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{64x^2}=32\\x=y\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=4\\x=y=-4\end{cases}}\)
Áp dụng BĐT Cô-si với 2 số ko âm,ta có:
x^2+y^2>=2xy
y^2+16>=8y
x^2+16>=8y
suy ra 2(x^2+y^2+16)>=2xy+8x+8y
suy ra x^2+y^2+16>=xy+4x+4y