K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nguyễn Việt Lâm mk vẫn chưa hiểu đoạn S lớn hơn hoặc bằng....

NV
17 tháng 5 2020

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}\)

\(\frac{1}{2xy}\ge\frac{1}{2.\frac{\left(x+y\right)^2}{4}}\)

Đẹp Trai Không Bao Giờ Sai

AH
Akai Haruma
Giáo viên
24 tháng 12 2021

Lời giải:

Áp dụng BĐT AM-GM:

$S=1+\frac{2xy}{x^2+y^2}+2+\frac{x^2+y^2}{xy}$

$=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}$

$\geq 3+2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}+\frac{2xy}{2xy}$

$=3+2+1=6$

Vậy $S_{\min}=6$ khi $x=y$

18 tháng 10 2020

Vì xyz=1\(\Rightarrow x^2\left(y+z\right)\ge2x^2\sqrt{yz}=2x\sqrt{x}\)

Tương tự \(y^2\left(z+x\right)\ge2y\sqrt{y};z^2=\left(x+y\right)\ge2z\sqrt{z}\)

\(\Rightarrow P\ge\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}+\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(x\sqrt{x}+2y\sqrt{y}=a;y\sqrt{y}+2z\sqrt{z}=b;z\sqrt{z}+2x\sqrt{x}=c\)

\(\Rightarrow x\sqrt{x}=\frac{4c+a-2b}{9};y\sqrt{y}=\frac{4a+b-2c}{9};z\sqrt{z}=\frac{4b+c-2a}{9}\)

\(\Rightarrow P\ge\frac{2}{9}\left(\frac{4c+a-2b}{b}+\frac{4a+b-2c}{a}+\frac{4b+c-2a}{b}\right)\)

\(=\frac{2}{9}\text{ }\left[4\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)-6\right]\ge\frac{2}{9}\left(4.3+2-6\right)=2\)

Min P =2 khi và chỉ khi a=b=c khi va chỉ khi x=y=z=1

9 tháng 6 2020

\(S=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)

\(=\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{2xy}+\frac{\left(x+y\right)^2}{2xy}\)

\(\ge\left(x+y\right)^2\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{4\left(xy\right)}{2xy}\)

\(\ge\frac{4\left(x+y\right)^2}{\left(x+y\right)^2}+2=6\)

Dấu "=" xảy ra <=> x = y 

S đạt giá trị nhỏ nhất bằng 6 tại x = y.

22 tháng 5 2017

x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)

P=(x+y+1)(x^2+y^2)+4/(x+y)

>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)

x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8 

minP=8 

24 tháng 2 2018

dự đoán của chúa Pain x=y=1

áp dụng BDT cô si ta có

\(A\ge2\sqrt{\frac{\left(x+y+1\right)^2.\left(xy+x+y\right)}{\left(xy+x+y\right)\left(x+y+1\right)^2}}=2.\)

dấu = xảy ra khi 

\(\left(x+y+1\right)^2=xy+x+y\) :)

24 tháng 2 2018

bỏ cái chỗ x=y=1 đi nhé :)

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Mình nghĩ phần phân thức là $3x+3y+2z$ thay vì $3x+3y+3z$. Nếu là vậy thì bạn tham khảo lời giải tại link sau:

Cho x, y, z là các số thực dương thỏa mãn đẳng thức xy yz zx=5. Tìm GTNN của biểu thức \(P=\frac{3x 3y 2z}{\sqrt{6\left(... - Hoc24

2 tháng 1 2021

mình cảm ơn bạn nhiều ạ <3 bạn có thể giúp mình mấy câu mình vừa đăng không