Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =x^2-6x+9+x^2-6x+9
=2(x-3)^2>=0
Dấu = xảy ra khi x=3
b: =-(x^2+4x+y^2-2y)
=-(x^2+4x+4+y^2-2y+1-5)
=-(x+2)^2-(y-1)^2+5<=5
Dấu = xảy ra khi x=-2 và y=1
a) P = \(x^2+3x+y^2-3y-2xy+90\)
= \(\left(x-y\right)^2+3\left(x-y\right)+90\)
= \(5^2+3.5+90=130\)
b) P = \(4x^2+9y^2-12xy-12x+24xy-18y+118\)
= \(4x^2+9y^2+12xy-12x-18y+118\)
= \(\left(2x+3y\right)^2-6\left(2x+3y\right)+118\)
= \(\left(-7\right)^2-6.\left(-7\right)+118=209\)
a) Thay `x=1/2` vào A được:
`A=(5. 1/2 -7)(2. 1/2 +3)-(7 . 1/2 +2)(1/2 -4)=5/4`
b) Thay `x=2;y=-2` vào B được:
`B=(2+2.2)(-2-2.2)+(2-2.2)(-2+2.2)=-40`.
a) Với \(x=\dfrac{1}{2}\) ta được:
\(\Leftrightarrow A=\left(\dfrac{5.1}{2}-7\right)\left(\dfrac{2.1}{2}+3\right)-\left(\dfrac{7.1}{2}+2\right)\left(\dfrac{1}{2}-4\right)\)
\(\Leftrightarrow A=-\dfrac{9}{2}.4-\dfrac{11}{2}.\left(-\dfrac{7}{2}\right)\)
\(\Rightarrow A=\dfrac{5}{4}\)
\(.\)M= bn ghi lại đề nha ^.^
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a^2+2ab+b^2\right)-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1^3-3ab.1+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2.1\)
\(=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(M=1-3ab+3ab-6a^2b^2+6a^2b^2\)\(=1\)
k cho mình nha bn thanks nhìu <3 <3 (^3^)
2. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)(1)
Đặt \(x^2+5x+4=t\)
(1) = \(t.\left(t+2\right)-24\)
\(=t^2+2t+1-25\)
\(=\left(t+1\right)^2-25\)
\(=\left(t+1-5\right)\left(t+1+5\right)\)
\(=\left(t-4\right)\left(t+6\right)\)(2)
Thay \(t=x^2+5x+4\)vào (2) ta có:
(2) = \(\left(x^2+5x+4-4\right)\left(x^2+5x+4+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)\)\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
k mình nha bn <3 thanks
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
Bài 4 :
Thay x=y+5 , ta có :
a ) ( y+5)*(y5+2)+y*(y-2)-2y*(y+5)+65
=(y+5)*(y+7)+y^2-2y-2y^2-10y+65
=y^2+7y+5y+35-y^2-2y-2y^2-10y+65
= 100
Bài 5 :
A = 15x-23y
B = 2x-3y
Ta có : A-B
= ( 15x -23y)-(2x-3y)
=15x-23y-2x-3y
=13x-26y
=13x*(x-2y) chia hết cho 13
=> Nếu A chia hết cho 13 thì B chia hết cho 13 và ngược lại
a) \(x-y=-3\)
\(\Rightarrow\left(x-y\right)^2=9\)
\(\Leftrightarrow x^2-2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2-20=9\)
\(\Leftrightarrow x^2+y^2=29\)
b) \(\left(x-y\right)^3=-27\)
\(\Leftrightarrow x^3-y^3-3xy\left(x+y\right)=-17\)
\(\Leftrightarrow x^3-y^3-30\left(x+y\right)=-17\)
WHAT ???