Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\Rightarrow x^2+y^2+xy=a^2-b=3\)
Vì \(x,y\geq 0\rightarrow b\geq 0\rightarrow a^2=3+b\geq 3\)
Biến đổi:
\(T=(x+y)^3-3xy(x+y)-[(x+y)^2-2xy]\)
\(\Leftrightarrow T=a^3-3ab-a^2+2b\)
\(\Leftrightarrow T=a^3-3a(a^2-3)-a^2+2(a^2-3)=-2a^3+a^2+9a-6\)
Xét đạo hàm và lập bảng biến thiên hàm trên với điều kiện \(a\geq \sqrt{3}\) ta thu được \(T_{\max}=3\sqrt{3}-3\Leftrightarrow a=\sqrt{3}\Leftrightarrow (x,y)=(\sqrt{3},0)\)
Hàm không có min.
a.
\(y'=\dfrac{2-x}{2x^2\sqrt{x-1}}=0\Rightarrow x=2\)
\(y\left(1\right)=0\) ; \(y\left(2\right)=\dfrac{1}{2}\) ; \(y\left(5\right)=\dfrac{2}{5}\)
\(\Rightarrow y_{min}=y\left(1\right)=0\)
\(y_{max}=y\left(2\right)=\dfrac{1}{2}\)
b.
\(y'=\dfrac{1-3x}{\sqrt{\left(x^2+1\right)^3}}< 0\) ; \(\forall x\in\left[1;3\right]\Rightarrow\) hàm nghịch biến trên [1;3]
\(\Rightarrow y_{max}=y\left(1\right)=\dfrac{4}{\sqrt{2}}=2\sqrt{2}\)
\(y_{min}=y\left(3\right)=\dfrac{6}{\sqrt{10}}=\dfrac{3\sqrt{10}}{5}\)
c.
\(y=1-cos^2x-cosx+1=-cos^2x-cosx+2\)
Đặt \(cosx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=-t^2-t+2\)
\(f'\left(t\right)=-2t-1=0\Rightarrow t=-\dfrac{1}{2}\)
\(f\left(-1\right)=2\) ; \(f\left(1\right)=0\) ; \(f\left(-\dfrac{1}{2}\right)=\dfrac{9}{4}\)
\(\Rightarrow y_{min}=0\) ; \(y_{max}=\dfrac{9}{4}\)
d.
Đặt \(sinx=t\Rightarrow t\in\left[-1;1\right]\)
\(y=f\left(t\right)=t^3-3t^2+2\Rightarrow f'\left(t\right)=3t^2-6t=0\Rightarrow\left[{}\begin{matrix}t=0\\t=2\notin\left[-1;1\right]\end{matrix}\right.\)
\(f\left(-1\right)=-2\) ; \(f\left(1\right)=0\) ; \(f\left(0\right)=2\)
\(\Rightarrow y_{min}=-2\) ; \(y_{max}=2\)
Lời giải:
Đặt \((\sin ^2x,\cos ^2x)=(a,b)\). Bài toán trở thành:
Tìm min, max (nếu có) của hàm số $y=a^5+b^5$ biết $a+b=1$ và $a,b\in [0;1]$
---------------------------------
Áp dụng BĐT Cô-si:
\(a^5+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}\geq 5\sqrt[5]{a^5.\frac{1}{2^{20}}}=\frac{5a}{16}\)
\(b^5+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}+\frac{1}{2^5}\geq \frac{5b}{16}\)
Cộng theo vế:
\(\Rightarrow a^5+b^5+\frac{8}{2^5}\geq \frac{5(a+b)}{16}=\frac{5}{16}\)
\(\Rightarrow a^5+b^5\geq \frac{1}{16}\)
Vậy $y_{\min}=\frac{1}{16}$ khi $a=b=\frac{1}{2}$ hay $\sin x=\cos x=\frac{1}{\sqrt{2}}$
Lại có:
Vì $a,b\in [0;1]$ nên $a^5\leq a; b^5\leq b$
\(\Rightarrow y=a^5+b^5\leq a+b=1\)
Vậy $y_{\max}=1$ khi $(a,b)=(0,1)$ và hoán vị hay $(\sin x, \cos x)=(0,\pm 1)$ và hoán vị.
\(\left(xy-1\right)2^{2xy-1}=\left(x^2+y\right)2^{x^2+y}\)
\(\Leftrightarrow\left(xy-1\right)2^{2\left(xy-1\right)+1}=\left(x^2+y\right)2^{x^2+y}\)
\(\Leftrightarrow2\left(xy-1\right)2^{2\left(xy-1\right)}=\left(x^2+y\right)2^{x^2+y}\)
Do vế phải luôn dương \(\Rightarrow VT>0\Rightarrow xy-1>0\) (1)
Xét hàm \(f\left(t\right)=t.2^t\) với \(t>0\Rightarrow f'\left(t\right)=2^t+t.2^t.ln2>0\)
\(\Rightarrow f\left(t\right)\) đồng biến \(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow2\left(xy-1\right)=x^2+y\Rightarrow2xy-y=x^2+2\) (thay \(x=\dfrac{1}{2}\) thấy ko phải nghiệm)
\(\Rightarrow y=\dfrac{x^2+2}{2x-1}\) (2)
Thay (2) vào (1): \(xy-1>0\Rightarrow x.\left(\dfrac{x^2+2}{2x-1}\right)-1>0\Rightarrow\dfrac{x^3+2x}{2x-1}-1>0\)
\(\Rightarrow\dfrac{x^3+1}{2x-1}>0\Rightarrow2x-1>0\) (do \(x>0\Rightarrow x^3+1>0\))
Vậy \(y=\dfrac{x^2+2}{2x-1}=\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{9}{4\left(2x-1\right)}=\dfrac{2x-1}{4}+\dfrac{9}{4\left(2x-1\right)}+\dfrac{1}{2}\)
\(\Rightarrow y\ge2\sqrt{\dfrac{\left(2x-1\right)}{4}.\dfrac{9}{4\left(2x-1\right)}}+\dfrac{1}{2}=2\)
\(\Rightarrow y_{min}=2\) khi \(\dfrac{2x-1}{4}=\dfrac{9}{4\left(2x-1\right)}\Rightarrow x=2\)
Đáp án B
Ta có : \(y'=\cos x.e^{\sin x}\Rightarrow y"=-\sin x.e^{\sin x}+\cos^2x.e^{\sin x}\)
\(\Rightarrow y"=-\sin x.y+\cos x.y'\Rightarrow y'\cos x-y.\sin x-y"=0\)
=> Điều phải chứng minh