Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(C=2r\cdot3.14=r\cdot6.28\)
Vậy: C và r là hai đại lượng tỉ lệ thuận theo hệ số tỉ lệ k=6,28
Câu 2:
Vì x và y là hai đại lượng tỉ lệ thuận
nên \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
a: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
nên \(\dfrac{x_1}{-2}=\dfrac{4}{6}=\dfrac{2}{3}\)
hay \(x_1=\dfrac{-4}{3}\)
b: \(\dfrac{x_1}{x_2}=\dfrac{y_1}{y_2}\)
\(\Leftrightarrow\dfrac{x_1}{-3}=\dfrac{y_1}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x_1}{-3}=\dfrac{y_1}{4}=\dfrac{y_1-x_1}{4-\left(-3\right)}=\dfrac{-2}{7}\)
Do đó: \(x_1=\dfrac{6}{7};y_1=-\dfrac{8}{7}\)
y1 tỉ lệ thuận với x1 theo hệ số tỉ lệ a
\(\Rightarrow\)y1 = a . x1
y2 tỉ lệ với x2 theo hệ sô tỉ lệ a
\(\Rightarrow\)y2 = a . x2
\(\Rightarrow\)y1 + y2 = a . x1 + a . x2 = a . ( x1 + x2 )
Vậy y1+y2 tỉ lệ thuận với x1+x2 theo hệ số tỉ lệ a
Ta có: y1=a.x1
y2=a.x2
y1/x1=y2/x2=a
y1+y2/x1+x2=a
y1+y2=a×(x1+x2)
Vậy y1+y2 tỉ lệ thuận với x1+x2
Và hệ số tỉ lệ là a
Lời giải:
a. Vì $x,y$ tỉ lệ thuận nên đặt $y=kx$. Ta có:
$y_1=kx_1$ hay $\frac{1}{2}=k.2\Rightarrow k=\frac{1}{4}$. Vậy $y=\frac{1}{4}x$
$y_2=kx_2=\frac{1}{4}x_2=\frac{1}{4}.3=\frac{3}{4}$
b.
Vì $x,y$ tỉ lệ nghịch nên đặt $xy=k$.
$x_1y_1=k=x_2y_2$
$\Leftrightarrow \frac{1}{2}.4=x_2.(-4)$
$\Leftrightarrow x_2=\frac{-1}{2}$
a) Do x1 tỉ lệ thuận với y1 -> y1= x1k -> k= y1/x1 -> k= -7/2
thay vào => y2 = x2 . -7/2 -> y2= -6 . -7/2 = 21.
Vậy x2 = -6 thì y2 = 21
b) Cmtt -> k= -1/3 => x2= y2/k = 3/(-1/3) = -9
Vậy nếu y2 = 3 thì x2 = -9
Cho hỏi mình sai ở đâu ạ?