Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(x2+y2)=(x-y)2 => 2x2+2y2=x2-2xy+y2
x2+y2=-2xy
x2+y2+2xy=0
=>(x+y)2=0 =>x+y=0 => x=-y
Ta có: 2x^2+2y^2=x^2-2xy+y^2
<=>x^2+y^2=-2xy
<=> x^2+2xy+y^2=0
<=>(x+y)^2=0
=>x+y=0
=>x=-y
Ta có: x2+y=y2+x
=>x2+y-y2+x=0
=>(x2-y2)-(x-y)=0
=>(x-y)(x+y)-(x-y)=0
=>(x-y)(x+y-1)=0
=>x-y=0 hoặc x+y-1=0
=>x+y=1(TH1 loại do x khác y)
ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)
=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2
=>A=x2-xy+y2+3x3y+3xy3+6x2y2
=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)
=>A=1-3xy+3x2y+3xy2
=>A=1+3xy(-1+a+b)
=>A=1+3xy(-1+1)
=>A=1+3xy.0
=>A=1
Vậy A=1 khi x2+y=y2+x và x khác y.
Lê Nhật Minh này! Bạn k bt thì đừng nói. Có phải bài nào cx giống nhau đâu, mak có thế thì bạn cx sai
\(1,P=\left(x+y+x-y\right)\left(x+y-x+y\right)+2\left(x^2-y^2\right)-4y^2\\ P=4xy+2x^2-6y^2\)
Bài 1:
\(P=2\left(x+y\right)\left(x-y\right)-\left(x-y\right)^2+\left(x+y\right)^2-4y^2\)
\(=2\left(x^2-y^2\right)-\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)-4y^2\)
\(=2x^2-2y^2-x^2+2xy-y^2+x^2+2xy+y^2-4y^2\)
\(=2x^2+4xy-7y^2\)
Mối quan hệ giữa x và y là: x= 0,3 y