Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x,y\) tỉ lệ nghịch \(\Rightarrow\dfrac{x_1}{x_2}=\dfrac{y_2}{y_1}=\dfrac{4}{3}\Rightarrow y_1=\dfrac{3}{4}y_2\)
\(y_1+y_2=14\Rightarrow\dfrac{3}{4}y_2+y_2=14\Rightarrow\dfrac{7}{4}y_2=14\Rightarrow y_2=8\)
\(\Rightarrow y_1=\dfrac{3}{4}\cdot8=6\)
Vì x,y tỉ lệ nghịch nên \(x_1y_1=x_2y_2\)
\(\Rightarrow\dfrac{y_1}{x_2}=\dfrac{y_2}{x_1}=\dfrac{y_1}{2}=\dfrac{y_2}{5}=\dfrac{y_2+y_1}{2+5}=\dfrac{21}{7}=3\\ \Rightarrow\left\{{}\begin{matrix}y_1=2\cdot3=6\\y_2=3\cdot5=15\end{matrix}\right.\)
Ta có: \(\frac{x_1}{x_2}=\frac{y_2}{y_1}\)
\(\Rightarrow\frac{x_1+x_2}{x_2}=\frac{y_2+y_1}{y_1}\)
\(Hay:\frac{2+3}{3}=\frac{52}{y_1}\)
\(\Rightarrow\frac{5}{3}=\frac{52}{y_1}\)
\(\Rightarrow y_1=\frac{52.3}{5}=31,2\)
Mà: \(y_1+y_2=52\)
\(\Rightarrow y_2=52-y_1=52-31,2=20,8\)
a, Ta có: 2 . x1 = 5 . y1
\(\Rightarrow\frac{x_1}{5}=\frac{y_1}{2}\)\(\Rightarrow\frac{2x_1}{10}=\frac{3y_1}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x_1}{10}=\frac{3y_1}{6}=\frac{2x_1-3y_1}{10-6}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x_1}{5}=3\\\frac{y_1}{2}=3\end{cases}}\Rightarrow\hept{\begin{cases}x_1=15\\y_1=6\end{cases}}\)
b, Vì x và y là 2 đại lượng tỉ lệ nghịch
=> x1 . y1 = a
=> 15 . 6 = a
=> 90 = a
=> x1 = 90 : y1 và x2 = 90 : y2
Ta có: x1 = 2 . x2
\(\Rightarrow\frac{90}{y_1}=2.\frac{90}{y_2}\)\(\Rightarrow\frac{90}{y_1}=\frac{180}{10}\)\(\Rightarrow y_1=\frac{90.10}{180}=5\)
P/s: trình bày khá ngu :<
hơi dài :
x,y là 2 đại lượng tỉ lệ nghịch, ta có:
\(\frac{y1}{y2}=\frac{x2}{x1}\) suy ra \(\frac{y1}{x2}=\frac{y2}{x1}=\frac{2y_1}{2x_2}=\frac{3y_2}{3x_1}=\frac{2y_1+3y_2}{2x_2+3x_1}=....\)