K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

p(x)= x^4 +2x^3 - 13x^2 - 14x+24
<=> p(x)= x^4 - x^3 + 3x^3 - 3x^3 - 10x^2 + 10x - 24x + 24
<=> p(x)= x^3(x - 1) + 3x^2(x - 1) - 10x(x - 1) - 24(x - 1)
<=> p(x)= (x^3 + 3x^2 - 10x - 24)(x - 1)
<=> p(x)= (x^3 - 3x^2 + 6x^2 - 18x + 8x - 24)(x - 1)
<=> p(x)= [x^2(x - 3) + 6x(x - 3) + 8(x - 3)](x - 1)
<=> p(x)= (x^2+ 6x + 8)(x - 3)(x - 1)
<=> p(x)= (x - 3)(x - 1)(x + 2)(x + 4)
một số chia hết cho 6 khi và chỉ khi nó đồng thời chia hết cho 2 và 3
* Giả sử (x - 3) và (x - 1) là số lẻ thì (x + 2) và (x + 4) là những số chẵn => hiển nhiên p(x) chia hết cho 2
xét tương tự với trường hợp ngược lại
* Nếu (x - 3) không chia hết cho 3 thì (x - 1) chia hết cho 3 hoặc (x + 4) chia hết cho 3
Nếu (x - 1) không chia hết cho 3 thì (x - 3) chia hết cho 3 hoặc (x + 4) chia hết cho 3
Hai trường hợp còn lại tương tự

24 tháng 9 2021

sai rồi nha

11 tháng 6 2018

1/

a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)

\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)

\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)

\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)

\(D=x\)

b/ Mình xin sửa lại đề:

Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)

Tại x = 12

\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)

\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)

\(E\left(x\right)=2012-x\)

\(E\left(x\right)=2000\)

2/

a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

<=> \(2x^2-10x-3x-2x^2=26\)

<=> \(-13x=26\)

<=> \(x=-2\)

b/ Bạn vui lòng coi lại đề.

3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)

\(D=-10\)

Vậy giá trị của D không phụ thuộc vào x (đpcm)

11 tháng 6 2018

Giúp mik vs^^

17 tháng 10 2021

\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)

19 tháng 6 2019

\(b,x^3-3x^2-4x+12\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x^2-4\right)\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

\(c,3x^3-7x^2+17x-5\)

\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)

\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)

19 tháng 6 2019

\(\text{d) 2x}^4- 7x^3 - 2x^2 + 13x + 6\)
\(\text{= (2x^4 + 2x^3) - (9x^3 + 9x^2) + (7x^2 + 7x) + (6x + 6)}\)
\(\text{= 2x^3(x + 1) - 9x^2(x + 1) + 7x(x + 1) + 6(x + 1)}\)
\(\text{= (x + 1)(2x^3 - 9x^2 + 7x + 6)}\)
\(\text{= (x + 1)(2x + 1)(x - 3)(x - 2)}\)