K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2023

Ta có:

x⁴ + 1/x⁴ = x⁴ + 2.x².1/x² + 1/x⁴ - 2.x².1/x²

= (x² + 1/x²)² - 2.x².1/x²

= 4² - 2

= 14

23 tháng 9 2023

Ta có: 

\(\dfrac{x^2+1}{x^2}=4\) (ĐK: \(x\ne0\))  

\(\Rightarrow x^2+1+4x^2\)

\(\Rightarrow4x^2-x^2=1\)

\(\Rightarrow3x^2=1\)

\(\Rightarrow x^2=\dfrac{1}{3}\)

\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\left(tm\right)\)

Thay vào biểu thức ta có:

\(\dfrac{x^4+1}{x^4}\)

\(=\dfrac{\left(\dfrac{\sqrt{3}}{3}\right)^4+1}{\left(\dfrac{\sqrt{3}}{3}\right)^4}\)

\(=\dfrac{\dfrac{9}{81}+1}{\dfrac{9}{81}}\)

\(=\dfrac{\dfrac{1}{9}+1}{\dfrac{1}{9}}\)

\(=\dfrac{10}{9}:\dfrac{1}{9}\)

\(=10\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Lời giải:

$x+\frac{1}{x}=3\Rightarrow (x+\frac{1}{x})^2=9$

$\Leftrightarrow x^2+2+\frac{1}{x^2}=9$

$\Leftrightarrow x^2+\frac{1}{x^2}=7$

$\Leftrightarrow \frac{x^4+1}{x^2}=7$

$\Leftrightarrow E=\frac{x^2}{x^4+1}=\frac{1}{7}$

 

26 tháng 7 2015

có khùng hk vậy hùng tự đăng tự giải ls

 

30 tháng 6 2015

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

23 tháng 6 2022

Ta có: \(\left|3x+4\right|+\left|3x-1\right|=\left|3x+4\right|+\left|1-3x\right|\)

Theo bất đẳng thức: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\), ta có:

\(\left|3x+4\right|+\left|1-3x\right|\ge\left|3x+4+1-3x\right|=5\Rightarrow\left|3x+4\right|+\left|3x-1\right|\ge5\) (*)

Mặt khác:

Với mọi x ta có:

\(3\left(x+1\right)^2\ge0\Rightarrow3\left(x+1\right)^2+4\ge4\Rightarrow\dfrac{20}{3\left(x+1\right)^2+4}\le\dfrac{20}{4}\Rightarrow\dfrac{20}{3\left(x+1\right)^2+4}\le5\) (**)

Từ (*)(**) \(\Rightarrow\dfrac{20}{3\left(x+1\right)^2+4}=5\)

\(\Rightarrow3\left(x+1\right)^2+4=4\)

\(\Rightarrow3\left(x+1\right)^2=0\)

\(\Rightarrow\left(x+1\right)^2=0\)

\(\Rightarrow x=-1\)

7 tháng 7 2016

1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)

\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)

\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)

\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)

\(-80< 84x+48< 49\)

\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\) 

\(\begin{cases}84x>-128\\84x< 1\end{cases}\)

\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)

\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)

 

7 tháng 7 2016

\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)

\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)

\(-\frac{32}{21}< x< \frac{1}{84}\)

\(-1^{11}_{21}< x< \frac{1}{84}\)

\(\Rightarrow x\in\left\{-1;0\right\}\)

Vậy x = 0

\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)

\(\frac{77}{16}< 2x< \frac{37}{6}\)

\(\frac{77}{32}< x< \frac{37}{12}\)

\(2^{13}_{32}< x< 3^1_{12}\)

=> x = 3