Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ đề bài ta có:
\(x+y+z=2\left(ax+by+cz\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x+y+z=2\left(ax+x\right)\\x+y+z=2\left(by+y\right)\\x+y+z=2\left(cz+z\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=2x\left(1+a\right)\\x+y+z=2y\left(1+b\right)\\x+y+z=2z\left(1+c\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{1+a}=\dfrac{2x}{x+y+z}\\\dfrac{1}{1+b}=\dfrac{2y}{x+y+z}\\\dfrac{1}{1+c}=\dfrac{2z}{x+y+z}\end{matrix}\right.\)
\(\Rightarrow Q=\dfrac{2x}{x+y+z}+\dfrac{2y}{x+y+z}+\dfrac{2z}{x+y+z}\)
\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
Vì ax + by =2c
ax + cz =2b
by + cz = 2a
=>Ta có ax + by + cz =a+b+c
=> ax + 2a=a+b+c
và 2c + cz =a+b+c
và 2b+ by =a+b+c
=> \(x=\dfrac{b+c-a}{a}\); \(y=\dfrac{a+c-b}{b}\);\(z=\dfrac{b+a-c}{c}\)
=> \(x+2=\dfrac{b+c+a}{a}\); \(y+2=\dfrac{a+c+b}{b}\);\(z+2=\dfrac{b+a+c}{c}\)
=>\(M=\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}=\dfrac{a+b+c}{a+b+c}=1\)
Ta có: \(x+y+z=by+cz+ax+cz+ax+by=2\left(ax+by+cz\right)\)Thay \(z=ax+by\)
\(\Rightarrow x+y+z=2\left(z+cz\right)=2z\left(1+c\right)\)
\(\Rightarrow\dfrac{1}{1+c}=\dfrac{2z}{x+y+z}\)
Tương tự:\(\left\{{}\begin{matrix}\dfrac{1}{1+a}=\dfrac{2x}{x+y+z}\\\dfrac{1}{1+b}=\dfrac{2y}{x+y+z}\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{1}{1+a}+\dfrac{1}{1+b}+\dfrac{1}{1+c}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)Vậy A=2
Phương Ann Nhã Doanh đề bài khó wá Mashiro Shiina Đinh Đức Hùng
Nguyễn Huy Tú Lightning Farron Akai Haruma
Đặt x/a=y/b=z/c=k
=>x=ak; y=bk; z=ck
\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{a^4k^2+b^4k^2+c^4k^2}=\dfrac{1}{a^2+b^2+c^2}\)
Ta có: \(x+y+z=\left(by+cz\right)+\left(ax+cz\right)+\left(ax+by\right)=2\left(ax+by+cz\right)\)
=> \(x+y+z=2\left(ax+by+cz\right)=2\left[\left(ax+by\right)+cz\right]=2\left[z+cz\right]=2\left(1+c\right)z\)
=> \(\frac{1}{1+c}=\frac{2z}{x+y+z}\) (1)
Tượng tự:
\(\frac{1}{1+a}=\frac{2x}{x+y+z}\) (2)
\(\frac{1}{1+b}=\frac{2y}{x+y+z}\) (3)
Cộng các vế của (1), (2), (3) ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (ĐPCM)
Ta có x+y=ax+by+2cz=z+2cz
=> x+y-z=2cz
=> \(c=\frac{x+y-z}{2z}\Rightarrow c+1=\frac{x+y-z}{2z}+1=\frac{x+y+z}{2z}\)
\(\Rightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\left(1\right)\)
\(y+z=2ax+by+cz\Rightarrow y+z-x=2ax\Rightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{x+y+z}{2x}\)
\(\Rightarrow\frac{1}{a+1}=\frac{2x}{x+y+z}\left(2\right)\)
\(z+x=2by+ax+cz=2by+y\Rightarrow z+x-y=2by\)
\(\Rightarrow b=\frac{z+x-y}{2y}\Rightarrow b+1=\frac{z+x-y}{2y}+1=\frac{x+y+z}{2y}\)
\(\Rightarrow\frac{1}{b+1}=\frac{2y}{x+y+z}\left(3\right)\)
Cộng từng vế của (1)(2)(3) ta có
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Cộng vế với vế của ba đẳng thức ta đc :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)
Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)
<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)
=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)
CMTT với 1/b+1 và 1/c+1
=> ĐPCM
\(x+y=by+cz+ax+cz=ax+by+2cz=z+2cz\)
\(\Rightarrow2cz=x+y-z\Rightarrow c=\frac{x+y-z}{2z}\Rightarrow c+1=\frac{x+y-z}{2z}+1=\frac{x+y+z}{2z}\)
\(\Rightarrow\frac{1}{1+c}=\frac{2z}{x+y+z}\)
Tương tự ta có: \(\frac{1}{1+a}=\frac{2x}{x+y+z}\) ; \(\frac{1}{1+b}=\frac{2y}{x+y+z}\)
\(\Rightarrow Q=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Ta có
\(x-y=\left(by+cz\right)-\left(ax+cz\right)=by-ax\)
\(\Leftrightarrow x\cdot\left(a+1\right)=y\cdot\left(b+1\right)\)
\(y-z=\left(ax+cz\right)-\left(ax+by\right)=cz-by\)
\(\Leftrightarrow z\cdot\left(c+1\right)=y\cdot\left(b+1\right)\)
\(x-z=\left(by+cz\right)-\left(ax+by\right)=cz-ax\)
\(\Leftrightarrow x\cdot\left(a+1\right)=z\cdot\left(c+1\right)\)
\(\Rightarrow x\cdot\left(a+1\right)=z\cdot\left(c+1\right)=y\left(b+1\right)\)
Đặt \(x\cdot\left(a+1\right)=z\cdot\left(c+1\right)=y\left(b+1\right)=k\)
\(\Rightarrow\left\{{}\begin{matrix}a+1=\dfrac{k}{x}\\b+1=\dfrac{k}{y}\\c+1=\dfrac{k}{z}\end{matrix}\right.\)
Thay vào A, ta có :
\(A=\dfrac{1}{\dfrac{k}{x}}+\dfrac{1}{\dfrac{k}{y}}+\dfrac{1}{\dfrac{k}{z}}\)
\(=\dfrac{x}{k}+\dfrac{y}{k}+\dfrac{z}{k}\)
=\(\dfrac{x+y+z}{k}\)
Vì z = ax + by; x = cz + by; y = ax + cz nen :
\(k=z\cdot\left(c+1\right)=cz+z=cz+ax+by\)
\(\Rightarrow A=\dfrac{2\cdot\left(ax+by+czz\right)}{ax+by+cz}=2\)
⇒ĐPCM