Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-Nếu x < y thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\) < \(\frac{c}{d}\) hay \(\frac{a}{b}\) < \(\frac{2m}{2n}\) < \(\frac{c}{d}\)
Suy ra \(\frac{a}{b}\) < \(\frac{m}{n}\) < \(\frac{c}{d}\)
hay x < z < y
- Nếu x > y thì \(\frac{a}{b}\) > \(\frac{a+c}{b+d}\) > \(\frac{c}{d}\) hay \(\frac{a}{b}\) > \(\frac{2m}{2n}\) > \(\frac{c}{d}\)
Suy ra \(\frac{a}{b}\) > \(\frac{m}{n}\) > \(\frac{c}{d}\)
hay x > z > y
Vì b,d,n > 0 nên Ta có:
ad - bc = 1 \(\Rightarrow\) ad > bc \(\Rightarrow\) \(\frac{a}{b}>\frac{c}{d}\) (1)
cn - dm = 1 \(\Rightarrow\) cn > dm \(\Rightarrow\) \(\frac{c}{d}>\frac{m}{n}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}>\frac{c}{d}>\frac{m}{n}\).
Vậy x > y > z
a, ta có:x-y=a/b - c/d
=> x - y = ad-bc/ bd=1/bd mà b,d,n>0=>bd>0=> 1/bd>0
=>x >y(1)
ta lại có y-z =cn-dm/dn=1/dn
mà b,d,n=> dn>0=> 1/dn >0
=>y>z(2)
từ (1) ,(2) =>x>y>z
còn ý b các bạn tự suy nghĩ nhé
chúc các bạn học giỏi
Để so sánh x và y, ta sẽ so sánh a(b + c) và b(a + c) (theo tính chất về tỉ lệ thức)
Ta có: a(b + c) = ab + ac
b(a + c) = ab + bc
Th1: Nếu a> b thì ab + ac > ab + bc \(\Rightarrow\)x > y
Th2: Nếu a<b thì ab + ac < ab + bc \(\Rightarrow\)x < y
Th3: Nếu a = b thì ab + ac = ab + bc \(\Rightarrow\)x = y