Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
M = ( x 4 y n + 1 - 1 2 x 3 y n + 2 ) : ( 1 2 x 3 y n ) - 20 x 4 y : 5 x 2 y = ( x 4 y n + 1 : 1 2 x 3 y n ) - ( 1 2 x 3 y n + 2 ) : ( 1 2 x 3 y n ) - 4 x 2 = 2 x 4 - 3 y n + 1 - n – x 3 - 3 y n + 2 - n – 4 x 2 = 2 x y – y 2 – 4 x 2 = - y 2 – 2 x y + x 2 + 3 x 2 = - [ ( x – y ) 2 + 3 x 2 ]
Vì với x;y ≠ 0 thì ( x – y ) 2 + 3 x 2 > 0 nên - [ ( x – y ) 2 + 3 x 2 ] < 0 ; Ɐ x;y ≠ 0
Hay giá trị của M luôn là số âm
Đáp án cần chọn là: A
Ta có
x 2 – 4 y 2 – 2 x – 4 y = x 2 – 4 y 2 – 2 x + 4 y = x – 2 y x + 2 y – 2 x + 2 y = x + 2 y x – 2 y – 2
Suy ra m = -2
Đáp án cần chọn là: A
Câu 1:
Áp dụng BĐT Cô-si:
\(x^4+y^2\geq 2\sqrt{x^4y^2}=2x^2y\Rightarrow \frac{x}{x^4+y^2}\leq \frac{x}{2x^2y}=\frac{1}{2xy}=\frac{1}{2}(1)\)
\(x^2+y^4\geq 2\sqrt{x^2y^4}=2xy^2\Rightarrow \frac{y}{x^2+y^4}\leq \frac{y}{2xy^2}=\frac{1}{2xy}=\frac{1}{2}(2)\)
Lấy \((1)+(2)\Rightarrow A\leq \frac{1}{2}+\frac{1}{2}=1\)
Vậy \(A_{\max}=1\). Dấu bằng xảy ra khi \(x=y=1\)
Câu 2:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)(x^2+y^2+2xy)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{1}=4(*)\)
(do \(x+y\leq 1\) )
Áp dụng BĐT Cô-si:
\(\frac{1}{4xy}+4xy\geq 2\sqrt{\frac{4xy}{4xy}}=2(**)\)
\(x+y\geq 2\sqrt{xy}\Leftrightarrow 1\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\)
\(\Rightarrow \frac{5}{4xy}\geq \frac{5}{4.\frac{1}{4}}=5(***)\)
Cộng \((*)+(**)+(***)\Rightarrow B\geq 4+2+5=11\)
Vậy \(B_{\min}=11\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
c)\(\left(xy^2-1\right)\left(x^2y+5\right)\)
\(=x^3y^3+5xy^2-x^2y-5\)
d)\(4\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)\left(4x^2+1\right)\)
\(=4\left(x^2-\dfrac{1}{4}\right)\left(4x^2+1\right)\)
\(=4\left(4x^4+x^2-x-\dfrac{1}{4}\right)\)
\(=16x^4+4x^2-4x-1\)
Ta có
x 2 – 4 x y + 4 y 2 – 4 = x 2 – 2 . x . 2 y + 2 y 2 – 4 = x – 2 y 2 – 2 2 = x – 2 y – 2 x – 2 y + 2
Vậy m = 2.
Đáp án cần chọn là: B