\(\frac{1}{xy}\) 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

Áp dụng các bất đẳng thức sau (tự chứng minh)

\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

được \(8\left(x^4+y^4\right)\ge8\left[\frac{\left(x^2+y^2\right)^2}{2}\right]=4\left(x^2+y^2\right)^2\ge4\left[\frac{\left(x+y\right)^2}{2}\right]^2=1\)

Lại có: \(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow1\ge4xy\)

\(\Leftrightarrow xy\le\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{xy}\ge4\)

Cộng 2 vế của 2 bđt trên lại ta đc đpcm

Dấu "=" xảy ra <=> x = y = 1/2

Vậy .....

14 tháng 4 2020

Bất đẳng thức bị ngược dấu rồi!

Ta có: \(x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(z+x\right)\)

Tương tự ta có: \(y+zx=\left(x+y\right)\left(y+z\right);z+xy=\left(y+z\right)\left(z+x\right)\)

Áp dụng BĐT Côsi cho hai số dương ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

\(\Rightarrow\text{Σ}_{cyc}\frac{x}{x+yz}=\frac{\text{Σ}_{cyc}\left[x\left(y+z\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{2\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=2+\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\le2+\frac{2xyz}{8xyz}=2+\frac{1}{4}=\frac{9}{4}\)

Đẳng thức xảy ra\(\Leftrightarrow x=y=z=\frac{1}{3}\)

5 tháng 10 2018

Vào câu trả lời tương tự đi

9 tháng 9 2019

Với mọi x,y >0 có \(\left(x+y\right)^2\ge4xy\)

=> \(1\ge4xy\) (do x+y=1) <=> \(\frac{1}{xy}\ge4\)

​Lại có \(x^2+y^2\ge2xy\)

<=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)

<=> \(x^2+y^2\ge\frac{1}{2}\)

\(x^4+y^4\ge2x^2y^2\)

<=> \(2\left(x^4+y^4\right)\ge\left(x^2+y^2\right)^2\ge\left(\frac{1}{2}\right)^2\)

<=> \(8\left(x^4+y^4\right)\ge\frac{1}{4}.4=1\)

=> \(8\left(x^4+y^4\right)+\frac{1}{xy}\ge1+4=5\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{2}\)

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2=1\)

9 tháng 9 2019

Cho mik hỏi sao \(\left(x^2+y^2\right)^2\)\(\left(\frac{1}{2}\right)^2\) vậy bạn

23 tháng 7 2016

Đặt  \(P=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=x+y+\frac{2}{x+y}\)  (do  \(xy=1\)  )

Khi đó, ta có thể biến đổi biểu thức  \(P\)  quay về dạng có thể dùng bđt  \(AM-GM\)  hay nói cách khác, đây là số mệnh của nó đã được an bài đằng sau cách cửa biết nói.

\(P=\left[\left(x+y\right)+\frac{4}{x+y}\right]-\frac{2}{x+y}\ge2\sqrt{\left(x+y\right).\frac{4}{\left(x+y\right)}}=4-\frac{2}{x+y}\)

Mặt khác, do  \(x+y\ge2\sqrt{xy}=2\)  (theo bđt  \(AM-GM\)  cho hai số thực  \(x,y\)không âm)

nên  \(-\frac{1}{x+y}\ge-\frac{1}{2}\)  hay nói cách khác, \(-\frac{2}{x+y}\ge-1\)

Do đó,  \(P\ge4-1=3\)  (đpcm)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x,y>0\\xy=1\\x=y\end{cases}\Leftrightarrow}\)  \(x=y=1\)

25 tháng 7 2018

\(VT=\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\)

\(\ge\dfrac{4}{x^2+2xy+y^2}\)

\(=\dfrac{4}{\left(x+y\right)^2}>4\)

25 tháng 7 2018

Cách khác.

Ta có: \(A=\dfrac{1}{x\left(x+y\right)}+\dfrac{1}{y\left(x+y\right)}=\dfrac{1}{x+y}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)

\(=\dfrac{1}{x+y}.\dfrac{x+y}{xy}=\dfrac{1}{xy}\)

Áp dụng BĐT cho các số x,y >0 , ta có:

\(x+y\ge2\sqrt{xy}\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow\dfrac{\left(x+y\right)^2}{4}\ge xy\)

Và x+y \(\le\)1 \(\Rightarrow xy\le\dfrac{1}{4}\) \(\Rightarrow A\ge\dfrac{1}{\dfrac{1}{4}}=4\)

Dấu ''='' xảy ra khi x = y =0,5

26 tháng 7 2019

a) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Ta được điều phải chứng minh.

7 tháng 8 2019

Hỏi đáp Toán

https://olm.vn/hoi-dap/detail/5617054235.html

https://olm.vn/hoi-dap/detail/5617054235.html

Xem tại: Câu hỏi của Vương Hoàng Minh - Toán lớp 9 - Bất đẳng thức