K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://h.vn/hoi-dap/question/393752.html

tham khảo ở link này( mik gửi cho)

Học tốt!!!!!!!!!!!!!!!

16 tháng 7 2019

cảm ơn bạn ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★

8 tháng 6 2020

A C B E K I T

a) Xét \(\Delta\)ACE và \(\Delta\)KCE có: CE chung; ^ACE = ^KCE ( CE là phân giác ^ACB); ^EAC = ^EKC = 90o 

=> \(\Delta\)ACE = \(\Delta\)KCE ( cạnh huyền - góc nhọn ) (1)

=> CA = CK 

b) (a) => C thuộc đường trung trực của AK 

(1) => EA = EK => E thuộc đường trung trực của AK 

=> CE là đường trung trực của AK 

c) Xét \(\Delta\)ACB có ^A = 90o ; ^C=60o => ^B = 30o 

=> ^EBK = 60o

Mặt khác: ^KCE = ^ACE = ^ACB : 2 = 30o 

=> ^EBC = ^ECB 

=> \(\Delta\)BEC cân tại E 

d) Gọi T là giao điểm của CA và BI 

Xét \(\Delta\)TCB có BA vuông CT; CI vuông TB 

mà CI cắt BA tại E 

=> E là trực tâm của \(\Delta\)TCB 

=> TE vuông BC mà EK vuông BC 

=> T; E; K thẳng hàng 

=> CA; KE; BI đồng quy tại T 

Hình ko biết vẽ 

a/ Xét hai tam giác vuông ABI và EBI có:

góc ABI = góc EBI (BI là pg góc ABC)

BI: cạnh chung

=> tam giác ABI = tam giác EBI

=> BA = BE

Mà góc ABC = 600

=> tam giác BAE đều.

b/ Ta có: tam giác ABC vuông tại A

=> góc B + góc C = 900

hay 600 + góc C = 900

=> góc C = 300

Ta lại có: BI là pg góc ABC

=> góc ABI = góc IBC = 600 / 2 = 300

=> góc IBC = góc ICB = 300

=> tam giác IBC cân tại I

Mà IE là đường cao của tam giác IBC

=> IE cũng là trung tuyến của tam giác IBC

=> EB = EC (đpcm)

c/ Trong tam giác ABI vuông tại A

=> góc A > góc I

=> IB > AB

Trong tam giác ICE vuông tại E :

=> góc E > góc I

=> IC > EC

Ta có: IB > AB; IC > EC

=> IB + IC > AB + EC (đpcm).

d/ Ta có: BM là đường cao của tam giác BKC

Ta có: CA là đường cao của tam giác BKC

Mà BM cắt CA tại I

=> I là trực tâm của tam giác BKC

KE là đường cao còn lại của tam giác BKC (KE vuông góc BC)

=> I thuộc KE

=> K; I; E thẳng hàng.

a) Vì AE là phân giác BAC 

=> CAE = BAE 

Xét ∆ vuông ACE và ∆ vuông AKE ta có : 

AE chung 

CAE = BAE 

=> ∆ACE = ∆AKE (ch-gn)

=> AC = AK ( tương ứng )

=> ∆ACK cân tại A

Vì AE là phân giác BAC trong ∆ACK 

=> AE là trung trực ∆ACK

=> AE \(\perp\)CK

17 tháng 7 2019

C A K B E D

Cm: a) Xét t/giác ACE và t/giác AKE

có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)

   AE : chung

 \(\widehat{CAE}=\widehat{KAE}\) (gt)

=> t/giác ACE = t/giác AKE (ch - gn)

=> AC = AK ; EC = EK (các cặp cạnh t/ứng)

Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK

   +) EC = EK (cmt) => E thuộc đường trung trực của CK

Mà A \(\ne\)E => AE là đường trung trực của CK

=> AE \(\perp\)CK

b) Xét t/giác ABC có góc C = 900

=> \(\widehat{A}+\widehat{ABC}=90^0\)

=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)

Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)

=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E

=> AE = EB

=> AK = KB (quan hệ giữa đường xiên và hình chiếu)

(có thể xét qua 2 t/giác AEK và t/giác BEK)

c) Xét t/giác EKB có góc EKB = 90 độ

=> EB > KB (ch > cgv)

Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)

=> EB > AC 

d) Ta có: AC \(\perp\)BC \(\equiv\)C

     KE\(\perp\)AB \(\equiv\)K

      BD \(\perp\)AD \(\equiv\)D

=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)

17 tháng 7 2019

A B C E K D 1 2 1

a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)

\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).

b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.

c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).

d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác). 

a) Xét tg ACE và AKE có :

AE-chung

\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)

\(\widehat{ACE}=\widehat{AKE}=90^o\)

=> Tg ACE=AKE

=> AC=AK

CE=Ek

=> AE là đường trung trực của CK

=> CK vuông góc AE (đccm)

b) Tg ABC có \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

\(\Rightarrow\widehat{ABC}+90^o+60^o=180^o\)

\(\Rightarrow\widehat{ABC}=30^o\)

\(\Rightarrow\widehat{ABC}=\widehat{BAE}=\frac{\widehat{BAC}}{2}=\frac{60^o}{2}=30^o\)

=> Tg AEB cân tại E

\(EK\perp AB\)

\(\Rightarrow AK=KB=\frac{AB}{2}\) (t/c các đường trong tg cân)

Mà AK=AC (cmt)

\(\Rightarrow AC=\frac{AB}{2}\Rightarrow2AC=AB\left(đccm\right)\)

c) Xét tg KEB vuông tại K có KB<EB (cgv<ch)

Mà KB=KA=AC

=> AC<EB (đccm)

d) Tự cm nốt :)))

#H