K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 1 2018

Lời giải:

a) Từ công thức truy hồi \(u_{n+1}=u_n+n^3\) suy ra:

\(u_1=1\) (theo giả thiết)

\(u_2=u_1+1^3=2\)

\(u_3=u_2+2^3=2+2^3=10\)

\(u_4=u_3+3^3=37\)

\(u_5=u_4+4^3=101\)

b) Ta sẽ chỉ ra công thức tổng quát của dãy là:

\(u_n=1+1^3+2^3+...+(n-1)^3\)

Thật vậy:

Với \(n=2\Rightarrow u_2=1+1^3=2\) (đúng)

Với \(n=3\Rightarrow u_3=1+1^3+2^3=10\) (đúng)

....

Giả sử công thức đúng với \(n=k\), tức là:

\(u_k=1+1^3+2^3+...+(k-1)^3\)

Ta chứng minh nó cũng đúng với \(n=k+1\)

Thật vậy:

\(u_{k+1}=u_k+k^3=1+1^3+2^3+...+(k-1)^3+k^3\)

Do đó công thức đúng với $n=k+1$

Do đó ta có \(u_n=1+1^3+2^3+...+(n-1)^3=1+\left(\frac{n(n-1)}{2}\right)^2\)

21 tháng 9 2019

a. Năm số hạng đầu của dãy số

Giải bài tập Đại số 11 | Để học tốt Toán 11

b. Dự đoán công thức số hạng tổng quát của dãy số:

un =√(n+8) (1)

Rõ ràng (1) đúng với n = 1

Giả sử (1) đúng với n = k, nghĩa là uk = √(k+8)

Giải bài tập Đại số 11 | Để học tốt Toán 11

⇒ (1) đúng với n = k + 1

⇒ (1) đúng với mọi n ∈ N*.

21 tháng 9 2018

a. u1 = - 1, un + 1 = un + 3 với n > 1

u1 = - 1;

u2 = u1 + 3 = -1 + 3 = 2

u3 = u2 + 3 = 2 + 3 = 5

u4 = u3 + 3 = 5 + 3 = 8

u5 = u4 + 3 = 8 + 3 = 11

b. Chứng minh phương pháp quy nạp: un = 3n – 4 (1)

+ Khi n = 1 thì u1 = 3.1 - 4 = -1, vậy (1) đúng với n = 1.

+ Giả sử công thức (1) đúng với n = k > 1 tức là uk = 3k – 4.

+ Ta chứng minh (1) đúng với n= k+ 1 tức là chứng minh: uk+1 = 3(k+1) - 4

Thật vậy,ta có : uk + 1 = uk + 3 = 3k – 4 + 3 = 3(k + 1) – 4.

⇒ (1) đúng với n = k + 1

Vậy (1) đúng với ∀ n ∈ N*.

24 tháng 11 2019

a. 5 số hạng đầu dãy là:

u1 = 2;

u= 2u1 – 1 = 3;

u3 = 2u2 – 1 = 5;

u4 = 2u3 – 1 = 9;

u5 = 2u4 – 1 = 17

b. Chứng minh un = 2n – 1 + 1 (1)

+ Với n = 1 ⇒ u1 = 21 - 1 + 1 = 2 (đúng).

+ Giả sử (1) đúng với n = k ≥ 1, tức là uk = 2k-1 + 1 (1)

Ta chứng minh: uk+1 = 2k + 1. Thật vậy, ta có:

⇒ uk+1 = 2.uk – 1 = 2(2k-1 + 1) – 1 = 2.2k – 1 + 2 – 1 = 2k + 1

⇒ (1) cũng đúng với n = k + 1 .

Vậy un = 2n – 1 + 1 với mọi n ∈ N.

31 tháng 5 2018

u1=-1

u2=-1+3=2

u3=2+3=5

u4=5+3=8

u5=8+3=11

Công thức tổng quát là: \(U_n=U_1+\left(n-1\right)\cdot\left(3\right)=-1+3n-3=3n-4\)

15 tháng 12 2018

c)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

7 tháng 12 2017

a) Năm số hạng đầu là Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Lập tỉ số

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Theo công thứcđịnh nghĩa ta có Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy, dãy số ( v n ) là cấp số nhân, có v 1   =   1 / 3 ,   q   =   1 / 3

c) Để tính ( u n ) , ta viết tích của n - 1 tỉ số bằng 1/3

Giải sách bài tập Toán 11 | Giải sbt Toán 11

7 tháng 12 2017

Chọn B.

Ta có: u1 = 1; u2 = 3/2; u3 = 17/6; u4 = 227/34.

Ta chứng minh un > 0 bằng quy nạp.

Giả sử un > 0, khi đó: 

Nên .

13 tháng 7 2018

Đáp án A