Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ: \(\left(11a+2b\right)⋮19\Rightarrow7.\left(11a+2b\right)⋮19\Rightarrow\left(77a+14b\right)⋮19\)
Xét: 18a+5b+77a+14b=95a+19b\(=19.\left(5a+b\right)⋮19\)
Mà\(\left(77a+14b\right)⋮19\) (1)
\(\left(18a+5b+77a+14b\right)⋮19\) (2)
Từ (1),(2)\(\Rightarrow\left(18a+5b\right)⋮19\)
Vậy (11a+2b)/19\(\in Z\) khi và chỉ khi \(\left(18a+5b\right)\) /19\(\in Z\)
Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=k\)
\(\rightarrow a=2k;b=3k;c=4k\)
\(M=\dfrac{3a+2b-4c}{8a-5b+2c}\\ =\dfrac{3.2k+2.3k-4.4k}{8.2k-5.3k+2.4k}\\ =\dfrac{6k+6k-8k}{16k-15k+8k}\\ =\dfrac{4k}{9k}=\dfrac{4}{9}\)
Vậy \(M=\dfrac{4}{9}\)
Ta có : \(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}\\ Đặt\dfrac{a}{3}=\dfrac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\\ ThayvàoA,tacó:\)
\(A=\dfrac{2a-5b}{a-3b}-\dfrac{4a+b}{8a-2b}\\ \Leftrightarrow=\dfrac{2\cdot3k-5\cdot4k}{3k-3\cdot4k}-\dfrac{4\cdot3k+4k}{8\cdot3k-2\cdot4k}\\ =\dfrac{6k-20k}{3k-12k}-\dfrac{12k+4k}{24k-8k}\\ =\dfrac{14k}{9k}-\dfrac{16k}{16k}\\ =\dfrac{14}{9}-1\\ =\dfrac{5}{9}\)
(18a-5b).(27a+b) chia hết cho 17
Mà 17 là số nguyên tố nên trong 2 số 18a-5b và 27a+b có ít nhất 1 số chia hết cho 17
Xét hiệu: 5.(27a+b)+(18a-5b)
= 135a+5b+18a-5b
= 153a chia hết cho 17 (*)
+ Nếu 27a+b chia hết cho 17 từ (*) dễ dàng => 18a-5b chia hết cho 17
=> (27a+b)(18a-5b) chia hết cho 17.17 = 289
+ Nếu 18a-5b chia hết cho 17, từ (*) => 5.(27a+b) chia hết cho 17
Mà (5;17)=1 nên 27a+b chia hết cho 17
Do đó, (18a-5b)(27a+b) chia hết cho 17.17 = 289
Vậy ta có đpcm
a) Đặt a/2=b/3=c/4=k
suy ra a=2k; b=3k; c=4k
Thay vào P=\(\frac{2a+5b-4c}{a-11c+9c}\)=\(\frac{4k+15k-16k}{2k-44k+36k}\)=\(\frac{3k}{-6k}\)=\(\frac{1k}{-2k}\)=\(\frac{-1}{2}\)
b) Cho hỏi là câu b) nó là 5.b tất cả mũ 2 hay là chỉ b mũ 2 thôi ok
bạn đặt lm ra K rồi thay vào là dc dễ mà
\(\dfrac{a}{b}=\dfrac{3}{4}\Leftrightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{2a-5b}{-14}=\dfrac{a-3b}{-9}=\dfrac{4a+b}{16}=\dfrac{8a-2b}{16}\\ \Leftrightarrow A=\dfrac{-14}{-9}-\dfrac{16}{16}=\dfrac{14}{9}-1=\dfrac{5}{9}\)