Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACD có
I là trung điểm của AD
E là trung điểm của AC
Do đó: EI là đường trung bình của ΔACD
Suy ra: EI//CD
Xét ΔACB có
F là trung điểm của BC
E là trung điểm của AC
Do đó: FE là đường trung bình của ΔABC
Suy ra: FE//AB
EK là đtbinh tam giác => EK=1/2 CD, KF=1/2 AB áp dụng Bđt trong tam giác EKF có EF< EK+KF =>EF< 1/2(AB+CD) . Khi K nằm giữa Evà F thì EF= EK+KF = 1/2(AB+CD) kết hợp cả 2 => đpcm
a) Xét tam giác ADC có:
E là trung điểm AD
K là trung điểm AC
=> EK là đường trung bình
\(\Rightarrow EK=\dfrac{1}{2}CD\)
Xét tam giác ABC có:
F là trung điểm BC(gt)
K là trung điểm AC(gt)
=> KF là đường trung bình
\(\Rightarrow KF=\dfrac{1}{2}AB\)
Sửa đề: \(CM:EF\le\dfrac{AB+CD}{2}\)
Ta có: \(EF\le EK+KF=\dfrac{1}{2}AB+\dfrac{1}{2}CD=\dfrac{AB+CD}{2}\)
a) Xét tam giác ADC có:
AE = DE (1)
AI = IC (2)
Từ (1) và (2) ⇒ EI là đường trung bình(đtb) của tam giác ADC ⇒ EI // CD
Xét tam giác CBA có:
CF = FB (3)
CI = AI (4)
Từ (3) và (4) ⇒ IF là đtb của tam giác CBA ⇒ IF // AB
b) Xét tam giác EIF có:
EF < IF + EI
Mà: IF = AB/2 ( IF là đtb tam giác CBA )
EI = CD/2 ( EI là đtb tam giác ADC )
⇒ EF < AB/2 + CD/2
⇒ EF < ( AB + CD )/2
Trường hợp dấu "=" xảy ra khi 3 điểm E, I , F thẳng hàng hay tứ giác ABCD là hình thang
⇒ EF ≤ ( AB + CD )/2
nâng cao phát triển toán 8 tập 1 bài 16 phần hình, vào đó mà xem mình lười đánh lắm
bài 1
a) Trong ∆ACD có EA = ED, KA = KC (gt)
nên EK là đường trung bình của ∆ACD
Do đó EK = CD/2
Tương tự KF là đường trung bình của ∆ABC.
Nên KF = AB/2
b) Ta có EF ≤ EK + KF (bất đẳng thức trong ∆EFK)
Nên EF ≤ EK + KF = CD/2 + AB/2= (AB +CD)/2
Vậy EF ≤ (AB +CD)/2
ta có AE=ED và AI=IC suy ra EI là đường trung bình của tam giác ADC suy ra EI=1/2 DC (1)
BF=FC và AI=IC suy ra IF là đường trung bình của tam giác ABC suy ra IF=1/2AB (2)
xét tam giác EIF có : EF<EI+IF(bất đẳng thức tam giác)
từ (1) và (2) suy ra EF<(AB+CD)/2 (3)
nếu ABCD là hình thang suy ra E,I,F thẳng hàng suy ra ÈF=(AB+CD)/2 (4)
từ (3) và (4) suy ra EF nhỏ hơn hoặc bằng (AB+CD)/2