K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

A E B I F C G D H

Gọi I là giao điểm của hai AC và BD (1)

Ta có: AC và BD là hai đường chéo của hình chữ nhật ABCD

=> AI = IC và BI = ID

Xét tam giác ABC có: AE=EB và AI = IC

=> EI là đường trung bình của tam giác ABC

=> EG cắt AC tại I (2)

Xét tam giác ABD có AH=HD và DI=IB

=> HI là đường trung bình của tam giác ABD

=> HF cắt BD tại I (3)

Từ (1),(2),(3) suy ra EG cắt HF tại I (4)

Từ (1),(2),(3),(4) suy ra EG,HF,AC,BD đồng quy tại I

11 tháng 11 2016

a) A B C D E F G H

Ta nối E và G ; H và F lại với nhau tạo thành hai đường chéo của tứ giác HEFG.

Vì ABCD là hình nhữ nhật nên ABCD là hình thang đặc biệt.

Có: EG là đường trung bình của của hình chữ nhật ABCD ( AE=EB; DG=GC )

=> EG//AD (1)

HF là đường trung bình của hình chữ nhật ABCD ( AH=HD; BF=FC )

=> HF//AB (2)

Theo bài ra: AB _|_ AD ( Tứ giác ABCD là hình chữ nhật )

Từ (1) và (2) suy ra: HF_|_ EG

Tứ giác có hai đường chéo vuông góc với nhau là hình thoi nên HEFG là hình thoi.

Bạn có thể chứng minh theo trục đối xứng.

b) A B C D E F G H I

Gọi I là giao điểm của hai AC và BD (1)

Ta có: AC và BD là hai đường chéo của hình chữ nhật ABCD

=> AI = IC và BI = ID

Xét tam giác ABC có: AE=EB và AI = IC

=> EI là đường trung bình của tam giác ABC

=> EG cắt AC tại I (2)

Xét tam giác ABD có AH=HD và DI=IB

=> HI là đường trung bình của tam giác ABD

=> HF cắt BD tại I (3)

Từ (1),(2),(3) suy ra EG cắt HF tại I (4)

Từ (1),(2),(3),(4) suy ra EG,HF,AC,BD đồng quy tại I

12 tháng 11 2016

Sao cái hình để có phân nữa z

17 tháng 1 2017

Cho hình vuông ABCD, O là giao điểm hai đường chéo AC và BD. Qua O kẻ các đường thẳng lần lượt vuông góc với AB,BC,CD,DA tại E,G,F,H.Chứng minh:

a) Bà điểm E,O,F thẳng hàng và ba điểm G,O,H thẳng hàng

b) Tứ giác EGFH lầ hình vuông

1 tháng 7 2018

anh yeu em

a: Xét ΔABD có AE/AB=AH/AD=1/2

nên EH//BD và EH/BD=1/2

Xét ΔCBD có CG/CD=CF/CB=1/2

nên GF//BD và GF=1/2BD

=>EH//FG và EH=FG

Xét tứ giác EHGF có

EH//FG

EH=FG

=>EHGF là hình bình hành

b: Xét tứ giác AECG có

AE//CG

AE=CG

=>AECG là hình bình hành

AECG là hình bình hành

=>AC cắt EG tại trung điểm của mỗi đường(1)

EHGF là hình bình hành

=>EG và HF tại trung điểm của mỗi đường(2)

ABCDlà hình bình hành

=>AC và BD tại trung điểm của mỗi đường(3)

Từ (1), (2), (3) suy ra AC,BD,EG,FH đồng quy

 

13 tháng 11 2023

Xét ΔACD có

I,G lần lượt là trung điểm của CA,CD

=>IG là đường trung bình của ΔACD

=>IG//AD và IG=AD/2(1)

Xét ΔBAD có

E,K lần lượt là trung điểm của BA,BD

=>EK là đường trung bình của ΔBAD

=>EK//AD và EK=AD/2(2)

Từ (1) và (2) suy ra EK//IG và EK=IG

Xét tứ giác EKGI có

EK//GI

EK=GI

Do đó: EKGI là hình bình hành

=>EG cắt KI tại trung điểm của mỗi đường(3)

Xét ΔABD có

E,H lần lượt là trung điểm của AB,AD

=>EH là đường trung bình của ΔABD

=>EH//BD và EH=BD/2(4)

Xét ΔCBD có

F,G lần lượt là trung điểm của CB,CD

=>FG là đường trung bình của ΔCBD

=>FG//BD và FG=BD/2(5)

Từ (4) và (5) suy ra EH//FG và EH=FG

Xét tứ giác EHGF có

EH//FG

EH=FG

Do đó: EHGF là hình bình hành

=>EG cắt HF tại trung điểm của mỗi đường(6)

Từ (3) và (6) suy ra EG,FH,IK đồng quy