K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc SFE=1/2(sđ cung SB+sđ cung AD)

=1/2(sđ cung SA+sđ cung AD)

=1/2*sđ cung SD

=góc SCD

=>góc DFE+góc DCE=180 độ

=>CDFE nội tiếp

a: góc OBI+góc OMI=180 độ

=>OBIM nội tiếp

góc OMK+góc OCK=180 độ

=>OCKM nội tiếp

b; OBIM nội tiếp

=>góc OIM=góc OBM

OMCK nội tiếp

=>góc OKM=góc OCM

mà góc OBM=góc OCM

nên góc OIM=góc OKM

=>ΔOIK cân tại O

mà OM là đường cao

nên M là trung điểm của IK

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp BÀI 3 :Cho hai đoạn...
Đọc tiếp

BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp 

BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp 

BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp 

BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC 
a) c/m AMHN nội tiếp
b) BMNC nội tiếp 

BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp

BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp

BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp

BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp

0

a: A là điểm chính giữa của cung lơn MN

=>AM=AN

=>AO là trung trực của MN

=>AB vuông góc MN tại Evà E là trung điểm của MN

góc BKA=1/2*sđ cung AB=90 độ

góc AEC+góc AKC=90+90=180 độ

=>AKCE nội tiếp

b: Xét ΔBMC  và ΔBKM có

góc BMC=góc BKM

góc MBC chung

=>ΔBMC đồng dạng với ΔBKM

=>BM/BK=BC/BM

=>BM^2=BK*BC

24 tháng 2 2023

Ta có: \(\widehat{C_1}=\dfrac{1}{2}sđ\stackrel\frown{DM}\)

Mặt khác: \(\widehat{E_1}=\dfrac{sđ\stackrel\frown{BM}+sđ\stackrel\frown{AD}}{2}\)

                       \(=\dfrac{sđ\stackrel\frown{AM}+sđ\stackrel\frown{AD}}{2}=\dfrac{1}{2}sđ\stackrel\frown{DM}\)(Vì M là điểm chính giữa \(\stackrel\frown{AB}\) \(\Rightarrow\stackrel\frown{AM}=\stackrel\frown{BM}\))

\(\Rightarrow\widehat{C_1}=\widehat{E_1}\)

Vì \(\widehat{E_1}+\widehat{E_2}=180^o\Rightarrow\widehat{C_1}+\widehat{E_2}=180^o\) mà 2 góc đối nhau

=> tứ giác PEDC nội tiếp

17 tháng 11 2023

1: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)BF tại C

Xét tứ giác EDBC có

\(\widehat{EDB}+\widehat{ECB}=90^0+90^0=180^0\)

=>EDBC là tứ giác nội tiếp

Xét tứ giác ADCF có

\(\widehat{ADF}=\widehat{ACF}=90^0\)

=>ADCF là tứ giác nội tiếp

2: EDBC là tứ giác nội tiếp

=>\(\widehat{DEC}+\widehat{DBC}=180^0\)

mà \(\widehat{DEC}+\widehat{IEC}=180^0\)(kề bù)

nên \(\widehat{IEC}=\widehat{DBC}\)

3: \(\widehat{IEC}=\widehat{DBC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AC}\)(góc DBC là góc nội tiếp chắn cung AC)

\(\widehat{ICE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{CA}\)(góc ICE là góc tạo bởi tiếp tuyến IC và dây cung CA)

Do đó: \(\widehat{IEC}=\widehat{ICE}\)

=>IE=IC

\(\widehat{IEC}+\widehat{IFC}=90^0\)(ΔFCE vuông tại C)

\(\widehat{ICE}+\widehat{ICF}=\widehat{FCE}=90^0\)

mà \(\widehat{IEC}=\widehat{ICE}\)

nên \(\widehat{IFC}=\widehat{ICF}\)

=>IF=IC

mà IC=IE

nên IF=IC=IE

=>I là tâm đường tròn ngoại tiếp ΔCFE

17 tháng 11 2023

mik c.ơn nhiều