Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc SFE=1/2(sđ cung SB+sđ cung AD)
=1/2(sđ cung SA+sđ cung AD)
=1/2*sđ cung SD
=góc SCD
=>góc DFE+góc DCE=180 độ
=>CDFE nội tiếp
a: góc OBI+góc OMI=180 độ
=>OBIM nội tiếp
góc OMK+góc OCK=180 độ
=>OCKM nội tiếp
b; OBIM nội tiếp
=>góc OIM=góc OBM
OMCK nội tiếp
=>góc OKM=góc OCM
mà góc OBM=góc OCM
nên góc OIM=góc OKM
=>ΔOIK cân tại O
mà OM là đường cao
nên M là trung điểm của IK
a: A là điểm chính giữa của cung lơn MN
=>AM=AN
=>AO là trung trực của MN
=>AB vuông góc MN tại Evà E là trung điểm của MN
góc BKA=1/2*sđ cung AB=90 độ
góc AEC+góc AKC=90+90=180 độ
=>AKCE nội tiếp
b: Xét ΔBMC và ΔBKM có
góc BMC=góc BKM
góc MBC chung
=>ΔBMC đồng dạng với ΔBKM
=>BM/BK=BC/BM
=>BM^2=BK*BC
Ta có: \(\widehat{C_1}=\dfrac{1}{2}sđ\stackrel\frown{DM}\)
Mặt khác: \(\widehat{E_1}=\dfrac{sđ\stackrel\frown{BM}+sđ\stackrel\frown{AD}}{2}\)
\(=\dfrac{sđ\stackrel\frown{AM}+sđ\stackrel\frown{AD}}{2}=\dfrac{1}{2}sđ\stackrel\frown{DM}\)(Vì M là điểm chính giữa \(\stackrel\frown{AB}\) \(\Rightarrow\stackrel\frown{AM}=\stackrel\frown{BM}\))
\(\Rightarrow\widehat{C_1}=\widehat{E_1}\)
Vì \(\widehat{E_1}+\widehat{E_2}=180^o\Rightarrow\widehat{C_1}+\widehat{E_2}=180^o\) mà 2 góc đối nhau
=> tứ giác PEDC nội tiếp
1: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
=>AC\(\perp\)BF tại C
Xét tứ giác EDBC có
\(\widehat{EDB}+\widehat{ECB}=90^0+90^0=180^0\)
=>EDBC là tứ giác nội tiếp
Xét tứ giác ADCF có
\(\widehat{ADF}=\widehat{ACF}=90^0\)
=>ADCF là tứ giác nội tiếp
2: EDBC là tứ giác nội tiếp
=>\(\widehat{DEC}+\widehat{DBC}=180^0\)
mà \(\widehat{DEC}+\widehat{IEC}=180^0\)(kề bù)
nên \(\widehat{IEC}=\widehat{DBC}\)
3: \(\widehat{IEC}=\widehat{DBC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AC}\)(góc DBC là góc nội tiếp chắn cung AC)
\(\widehat{ICE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{CA}\)(góc ICE là góc tạo bởi tiếp tuyến IC và dây cung CA)
Do đó: \(\widehat{IEC}=\widehat{ICE}\)
=>IE=IC
\(\widehat{IEC}+\widehat{IFC}=90^0\)(ΔFCE vuông tại C)
\(\widehat{ICE}+\widehat{ICF}=\widehat{FCE}=90^0\)
mà \(\widehat{IEC}=\widehat{ICE}\)
nên \(\widehat{IFC}=\widehat{ICF}\)
=>IF=IC
mà IC=IE
nên IF=IC=IE
=>I là tâm đường tròn ngoại tiếp ΔCFE