K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2016

Bạn tự vẽ hình nha 

a) ACD chắn nửa đường tròng => ACD = 90 => ECD = 90 độ 

TG CEFD có ECD + EFD = 90 + 90 = 180 => CEFD nội tiếp 

b), Vì tg CEFD nội tiếp => EFC = CDE ( cùng chắn cung CE )  (1)

ABCD nội tiếp => CDB = BAC ( cùng chắn cug BC ) (2)

CMTT BAFE là tứ giác nội tiếp => BFE = BAE ( cùng chắn cung BE ) hay BAC = BFE  (3)

Từ (1) (2) và (3) => BFE = CFE  

=> BFA = CFD ( cùng phụ hai góc bằng nhau ) mà CFD = AFM => BFA = AFM 

=> FA là tia p/g BFM 

c) VÌ BFE = EFN => EF là tia pg BFN => \(\frac{BF}{FN}=\frac{BE}{EN}\) ( tc đường p/g trong tam giác )

VÌ FA là tia pg BFM => FA là tia p/g góc ngoài của BFN ( Vì  BFM ; BFN là hai góc kề bù )

=> \(\frac{BF}{FN}=\frac{DB}{DN}\left(II\right)\)

Từ (I) và ( II ) => \(\frac{BE}{EN}=\frac{BD}{DN}\Rightarrow BE\cdot DN=BD\cdot EN\)

d)  TAm giác EFD vuông tại F có FK là trung tuyến => FK = KD => KFD cân tại K => KFD = KDF 

MÀ KDF = BCA ( góc nội tiếp cùng chắn cung AB ) => KFD  = BCA 

TAm giác ECD vuông tại C có CK là tiếp tuyến => CK = KD => KCD = KDC  mà CDK = BAC (CMT ) 

=> KCD = BAC  mà EFB = BAC ( CMT ) => KCD = BFE => BFA  = ECK (  cùng phụ hai góc bằng nhau )

TG BCKF có BCK + BFK = BCA + ECK + BFK = BFA + BFK + KFD = AFD  = 180 độ 

=> BCKF là tứ giác nội tiếp 

Xem lại giúp mình nha ...............

2 tháng 2 2016

bài này để mk về nghĩ nhé mai mk trả lời cho 

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

a) 

$\widehat{ABD}=\widehat{DCA}=90^0$ (góc nt chắn nửa đường tròn)

$\Leftrightarrow \widehat{ABE}=\widehat{DCE}=90^0$

Tứ giác $ABEH$ có tổng 2 góc đối $\widehat{ABE}+\widehat{AHE}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

Tứ giác $DCEH$ có tổng 2 góc đối $\widehat{DCE}+\widehat{EHD}=90^0+90^0=180^0$ nên là tứ giác nội tiếp.

b) 

Từ 2 tứ giác nội tiếp phần a, kết hợp với $ABCD$ là tứ giác nội tiếp, ta có:

\(\widehat{HBE}=\widehat{EAH}=\widehat{CAD}=\widehat{CBD}=\widehat{CBE}\) nên $BE$ là tia phân giác $\widehat{HBC}$

\(\widehat{HCE}=\widehat{EDH}=\widehat{BDA}=\widehat{BCA}=\widehat{BCE}\) nên $CE$ là tia phân giác $\widehat{BCH}$

Do đó $E$ chính là tâm đường tròn nội tiếp tam giác $BCH$

c) Sử dụng tính chất trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền. Suy ra $IH=IC=EI=ID$.

Ta có:

\(\widehat{IHD}=\widehat{IDH}=\widehat{ODB}=\widehat{OBD}=\widehat{OBI}\) nên $OBIH$ là tứ giác nội tiếp $(1)$

Mặt khác:

$\widehat{HIC}=\widehat{HIB}+\widehat{CIB}$

$=2\widehat{IDH}+2\widehat{CDI}$

$=2\widehat{HDC}=2\widehat{ADC}=2(90^0-\widehat{CAD})$

$=180^0-2\widehat{CBE}=180^0-\widehat{CBH}$

$\Rightarrow BHIC$ là tứ giác nội tiếp $(2)$

Từ $(1);(2)$ suy ra đpcm.

 

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Hình vẽ:

9 tháng 1 2020

buithianhthoNo choice teenNguyễn Thị Ngọc ThơAkai HarumaNguyễn Thanh Hằng