K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

e lon ton chạy trên đường

2 tháng 7 2019

a) Ta có AB = CD (cạnh hình thoi)

BE = DG (gt)

⇒ AB + BE = CD + DG hay AE = CG (cmt)

Xét ΔAHE và ΔCFG có:

AE = CG

∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),

AH = CF (gt)

Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG

Chứng minh tương tự ta có HG = EF

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

b) Nối E và G.

Xét ΔOBE và ΔODG có

BE = DG (gt),

∠OBE = ∠ODG (so le trong),

OB = OD ( tính chất đường chéo của hình thoi ABCD)

⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG

Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

c) Hình bình hành EFGH là hình thoi ⇔ HE = EF

⇔ Hình thoi ABCD có 1 góc vuông

⇔ ABCD là hình vuông.

 

Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.

31 tháng 12 2018

a) Ta có AB = CD (cạnh hình thoi)

BE = DG (gt)

⇒ AB + BE = CD + DG hay AE = CG (cmt)

Xét ΔAHE và ΔCFG có:

AE = CG

∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),

AH = CF (gt)

Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG

Chứng minh tương tự ta có HG = EF

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

b) Nối E và G.

Xét ΔOBE và ΔODG có

BE = DG (gt),

∠OBE = ∠ODG (so le trong),

OB = OD ( tính chất đường chéo của hình thoi ABCD)

⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG

Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

18 tháng 11 2019

Tự vẽ hình 

a) Ta có: AB = CD  (cạnh hình thoi)

BE = DG (g.t)

=> AB + BE = CD + DG hay AE = CG (cmt)

Xét tam giác AHE  và tam giác CFG ta có:

AE=CG

HAE  = FCG (cùng bù vs BAD = DCB)

AH=CF (gt)

Do đó tam giác AHE = tam giác CFG (c.g.c) => HE = FG 

Do đó EFGH là cạnh bình hành (đpcm)

b) Nối E vs G 

Xét tam giác OBE và tam giác ODG ta có:

BE= DG (gt)

OBE = ODG (so le trong)

OB = OD ( tính chất đường chéo của hình thoi ABCD)

=> tam giác OBE = tam giác ODG (c.g.c) => OBE = ODG 

Mà DOG + GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

c) Hình bình hành EFGH là hình thoi ⇔ HE = EF

\(\Leftrightarrow\Delta HAE=\Delta EBF\left(c.c.c\right)\)

\(\Leftrightarrow\widehat{HAE}=\widehat{EBF}=\widehat{EDA}\left(đv\right)\)

\(\Leftrightarrow\widehat{HAE}=\widehat{EAD}\) mà \(\widehat{HAE}+\widehat{EAD=180^O\left(kb\right)}\)

\(\Leftrightarrow\widehat{HAE}=\widehat{EAD}=90^O\)

⇔ Hình thoi ABCD có 1 góc vuông

⇔ ABCD là hình vuông.

Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.

16 tháng 12 2020

a) Ta có AB = CD (cạnh hình thoi)

BE = DG (gt)

⇒ AB + BE = CD + DG hay AE = CG (cmt)

Xét ΔAHE và ΔCFG có:

AE = CG

∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),

AH = CF (gt)

Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG

Chứng minh tương tự ta có HG = EF

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

b) Nối E và G.

Xét ΔOBE và ΔODG có

BE = DG (gt),

∠OBE = ∠ODG (so le trong),

OB = OD ( tính chất đường chéo của hình thoi ABCD)

⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG

Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

c) Hình bình hành EFGH là hình thoi ⇔ HE = EF

⇔ Hình thoi ABCD có 1 góc vuông

⇔ ABCD là hình vuông.

Vậy hình thoi ABCD phải là hình vuông thì hình bình hành EFGH trở thành hình thoi.

31 tháng 12 2018

a) Ta có AB = CD (cạnh hình thoi)

BE = DG (gt)

⇒ AB + BE = CD + DG hay AE = CG (cmt)

Xét ΔAHE và ΔCFG có:

AE = CG

∠HAE = ∠FCG (cùng bù với ∠BAD = ∠DCB ),

AH = CF (gt)

Do đó ΔAHE = ΔCFG (c.g.c) ⇒ HE = FG

Chứng minh tương tự ta có HG = EF

Do đó tứ giác EFGH là hình bình hành (các cạnh đối bằng nhau).

b) Nối E và G.

Xét ΔOBE và ΔODG có

BE = DG (gt),

∠OBE = ∠ODG (so le trong),

OB = OD ( tính chất đường chéo của hình thoi ABCD)

⇒ ΔOBE = ΔODG (c.g.c) ⇒ ∠OBE = ∠ODG

Mà ∠DOG + ∠GOB = 180o ⇒ ba điểm G, O, E thẳng hàng.

Chứng minh tương tự ta có H, O, F thẳng hàng.

Vậy O là tâm đối xứng của hình bình hành EFGH.

10 tháng 12 2023

1:

ta có:ABCD là hình thoi

=>\(\widehat{BAD}=\widehat{BCD};\widehat{ABC}=\widehat{ADC}\)

Ta có: \(\widehat{BAD}+\widehat{EAH}=180^0\)(hai góc kề bù)

\(\widehat{BCD}+\widehat{FCD}=180^0\)(hai góc kề bù)

mà \(\widehat{BAD}=\widehat{BCD}\)

nên \(\widehat{EAH}=\widehat{FCD}\)

Ta có: \(\widehat{ABC}+\widehat{EBC}=180^0\)(hai góc kề bù)

\(\widehat{ADC}+\widehat{ADG}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ADC}\)

nên \(\widehat{EBC}=\widehat{ADG}\)

Ta có: \(DA+AH=DH\)

\(AB+BE=AE\)

\(BC+CF=BF\)

\(CD+DG=CG\)

mà DA=AB=BC=CD và AH=BE=CF=DG

nên DH=AE=BF=CG

Xét ΔHAE và ΔFCG  có

HA=FC

\(\widehat{HAE}=\widehat{FCG}\)

AE=CG

Do đó: ΔHAE=ΔFCG

=>HE=FG

Xét ΔHDG và ΔFBE  có

DH=BF

\(\widehat{HDG}=\widehat{BFE}\)

DG=BE

Do đó: ΔHDG=ΔFBE

=>HG=FE

Xét tứ giác GHEF có

GH=EF

GF=HE

Do đó: GHEF là hình bình hành

2: Gọi O là giao điểm của AC và BD

Ta có: ABCD là hình thoi

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AHCF có

AH//CF

AH=CF

Do đó: AHCF là hình bình hành

=>AC cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của AC

nên O là trung điểmcủa HF

Ta có: EHGF là hình bình hành

=>EG cắt HF tại trung điểm của mỗi đường

mà O là trung điểm của HF

nên O là trung điểm của EG

=>Hình bình hành EHGF và hình thoi ABCD có chung tâm 

1: DH=DA+AH

CG=CD+DG

BF=BC+CF

AE=AB+BE

mà DA=CD=BC=AB và AH=DG=CF=BE

nên DH=CG=BF=AE

góc ADG=180 độ-góc ADC

góc EBF=180 độ-góc ABC

mà góc ADC=góc ABC

nên góc ADG=góc EBF

góc EAB=180 độ-góc BAD

góc GCF=180 độ-góc BCD

mà góc BAD=góc BCD

nên góc EAB=góc GCF

Xét ΔHDG và ΔFBE có

HD=FB

góc HDG=góc FBE

DG=BE

Do đó: ΔHDG=ΔFBE

=>HG=FE

Xét ΔHAE và ΔFCG có

HA=FC

góc HAE=góc FCG

AE=CG

Do đó: ΔHAE=ΔFCG

=>HE=FG

Xét ΔADG và ΔCBE có

AD=CB

góc ADG=góc CBE

DG=BE

Do đó: ΔADG=ΔCBE

=>AG=CE

Xét tứ giác EHGF có

EH=FG

EF=GH

Do đó: EHGF là hình bình hành

2:

Gọi O là giao của AC và BD

ABCD là hình thoi

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét tứ giác AGCE có

AG=CE

AE=CG

Do đó: AGCE là hình bình hành

=>AC cắt GE tại trung điểm của mỗi đường

=>O là trung điểm của GE

GHEF là hình bình hành

=>GE cắt HF tại trung điểm của mỗi đường

=>O là trung điểm của HF

=>ĐPCM

3:

ABCD là hình vuông

=>góc BAD=góc ADC=90 độ

Xét ΔHAE vuông tại A và ΔGDH vuông tại D có

HA=GD

AE=DH

Do đó: ΔHAE=ΔGDH

=>HE=GH

Xét hình bình hành EHGF có HE=GH

nên EHGF là hình thoi